Math Problem Statement

i need solve this equation to get final ANSWER for z2 , and i know that L=320,A=90,T=2,Z1=23 Z2=?? GIVE ME STEPS PLS

Solution

Let's solve for Z2Z_2 step by step given the equation:

L=2A+T2(Z1+Z2)+T24π2A(Z1Z2)2L = 2A + \frac{T}{2}(Z_1 + Z_2) + \frac{T^2}{4\pi^2 A}(Z_1 - Z_2)^2

Given values:

  • L=320L = 320
  • A=90A = 90
  • T=2T = 2
  • Z1=23Z_1 = 23

We need to find Z2Z_2.

Step 1: Substitute the known values into the equation

Substitute the given values for LL, AA, TT, and Z1Z_1:

320=2(90)+22(23+Z2)+224π2(90)(23Z2)2320 = 2(90) + \frac{2}{2}(23 + Z_2) + \frac{2^2}{4\pi^2(90)}(23 - Z_2)^2

This simplifies to:

320=180+(23+Z2)+44π2(90)(23Z2)2320 = 180 + (23 + Z_2) + \frac{4}{4\pi^2(90)}(23 - Z_2)^2

Step 2: Simplify the equation

First, simplify the constants:

320=180+23+Z2+(23Z2)2π290320 = 180 + 23 + Z_2 + \frac{(23 - Z_2)^2}{\pi^2 \cdot 90}

Simplify the left side:

320=203+Z2+(23Z2)2π290320 = 203 + Z_2 + \frac{(23 - Z_2)^2}{\pi^2 \cdot 90}

Step 3: Isolate the quadratic term

Move the constants to the left side:

320203=Z2+(23Z2)2π290320 - 203 = Z_2 + \frac{(23 - Z_2)^2}{\pi^2 \cdot 90}

Simplify:

117=Z2+(23Z2)2π290117 = Z_2 + \frac{(23 - Z_2)^2}{\pi^2 \cdot 90}

Step 4: Eliminate the fraction

Multiply through by π290\pi^2 \cdot 90 to eliminate the fraction:

117(π290)=Z2(π290)+(23Z2)2117 (\pi^2 \cdot 90) = Z_2 (\pi^2 \cdot 90) + (23 - Z_2)^2

Simplify:

10530π2=Z2π290+(23Z2)210530 \pi^2 = Z_2 \pi^2 \cdot 90 + (23 - Z_2)^2

Step 5: Expand and solve for Z2Z_2

Now, you have a quadratic equation. I will expand and solve it for Z2Z_2 numerically.

Let's compute it.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Substitution

Formulas

L = 2A + (T/2)(Z1 + Z2) + (T^2 / 4π^2A)(Z1 - Z2)^2
Quadratic equation formula ax^2 + bx + c = 0

Theorems

Quadratic Formula
Algebraic Expansion

Suitable Grade Level

Grades 10-12