Math Problem Statement

(a+b):(b+c):(c+a)=6:7:8. If (a+b+c)=14, then find the value of c

Solution

Given the problem:

a+bb+c:b+cc+a:c+aa+b=6:7:8\frac{a+b}{b+c} : \frac{b+c}{c+a} : \frac{c+a}{a+b} = 6 : 7 : 8

and the information that a+b+c=14a + b + c = 14.

To solve for cc, let's analyze and work through the information provided.

  1. Assign Ratios: Based on the given ratios, we can set up proportional equations:

    a+bk=6,b+ck=7,c+ak=8\frac{a+b}{k} = 6, \quad \frac{b+c}{k} = 7, \quad \frac{c+a}{k} = 8

    where kk is the common proportional constant.

  2. Express a+ba+b, b+cb+c, and c+ac+a in terms of kk: a+b=6k,b+c=7k,c+a=8ka + b = 6k, \quad b + c = 7k, \quad c + a = 8k

  3. Use the Sum of Variables: We know that (a+b)+(b+c)+(c+a)=2(a+b+c)=214=28(a + b) + (b + c) + (c + a) = 2(a + b + c) = 2 \cdot 14 = 28

    Substituting our expressions in terms of kk: 6k+7k+8k=286k + 7k + 8k = 28

  4. Solve for kk: 21k=28k=2821=4321k = 28 \Rightarrow k = \frac{28}{21} = \frac{4}{3}

  5. Calculate a+ba+b, b+cb+c, and c+ac+a: a+b=6k=643=8a + b = 6k = 6 \cdot \frac{4}{3} = 8 b+c=7k=743=283=9.3b + c = 7k = 7 \cdot \frac{4}{3} = \frac{28}{3} = 9.\overline{3} c+a=8k=843=323=10.6c + a = 8k = 8 \cdot \frac{4}{3} = \frac{32}{3} = 10.\overline{6}

  6. Use a+b+c=14a + b + c = 14 to solve for cc**: From a+b=8a + b = 8, we have:

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Ratios and Proportions
Algebraic Equations

Formulas

(a+b)/(b+c) : (b+c)/(c+a) : (c+a)/(a+b) = 6:7:8
(a+b) + (b+c) + (c+a) = 2(a+b+c)

Theorems

Ratio and Proportion in Algebra

Suitable Grade Level

Grades 8-10