Math Problem Statement

f(3 + a) , and (f(3 + a) - f(a))/a respectively if f(x) = - x ^ 2 - 2x + 5 (- a ^ 2 - 8a - 10) , and (- 6 - 15 / a) (- a ^ 2 - 4a - 10) and (- 10 - 15 / a) ° (- a ^ 2 - 8a - 21) , and (- 10 - 5 / a) (- a ^ 2 - 2a + 5) and (- 6 - 5 / a)

Solution

We are solving two parts based on the given function f(x)=x22x+5f(x) = -x^2 - 2x + 5.

Part 1: f(3+a)f(3 + a)

Substitute x=3+ax = 3 + a into f(x)f(x):

f(3+a)=(3+a)22(3+a)+5f(3 + a) = -(3 + a)^2 - 2(3 + a) + 5

Expand the terms:

f(3+a)=(9+6a+a2)2(3+a)+5f(3 + a) = -(9 + 6a + a^2) - 2(3 + a) + 5 f(3+a)=96aa262a+5f(3 + a) = -9 - 6a - a^2 - 6 - 2a + 5 f(3+a)=a28a10f(3 + a) = -a^2 - 8a - 10

Part 2: f(3+a)f(a)a\frac{f(3 + a) - f(a)}{a}

Substitute x=ax = a into f(x)f(x):

f(a)=a22a+5f(a) = -a^2 - 2a + 5

Now calculate f(3+a)f(a)f(3 + a) - f(a):

f(3+a)f(a)=(a28a10)(a22a+5)f(3 + a) - f(a) = (-a^2 - 8a - 10) - (-a^2 - 2a + 5) f(3+a)f(a)=a28a10+a2+2a5f(3 + a) - f(a) = -a^2 - 8a - 10 + a^2 + 2a - 5 f(3+a)f(a)=6a15f(3 + a) - f(a) = -6a - 15

Divide by aa:

f(3+a)f(a)a=6a15a\frac{f(3 + a) - f(a)}{a} = \frac{-6a - 15}{a} f(3+a)f(a)a=615a\frac{f(3 + a) - f(a)}{a} = -6 - \frac{15}{a}

Final Answer:

The two results are:

  1. f(3+a)=a28a10f(3 + a) = -a^2 - 8a - 10
  2. f(3+a)f(a)a=615a\frac{f(3 + a) - f(a)}{a} = -6 - \frac{15}{a}

The correct choice is:

(a28a10) and (615a)\boxed{(-a^2 - 8a - 10) \text{ and } (-6 - \frac{15}{a})}


Would you like more details or have any questions?

Related Questions:

  1. How do we derive f(x)f(x) if given as a quadratic polynomial?
  2. Can you explain the meaning of f(3+a)f(a)a\frac{f(3 + a) - f(a)}{a} in terms of calculus?
  3. What happens if a=0a = 0 in the second part, and how do we handle it?
  4. How do we simplify similar expressions for higher-degree polynomials?
  5. Can we find a general formula for f(x+a)f(x + a) given f(x)f(x)?

Tip: Always check your substitution carefully to avoid sign errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Substitution
Simplification

Formulas

f(x) = -x^2 - 2x + 5
Difference quotient: (f(x + h) - f(x)) / h

Theorems

Basic principles of quadratic polynomials
Difference quotient in calculus as a foundation for derivatives

Suitable Grade Level

Grades 9-12