Math Problem Statement

Solve the following equations for x using the natural logarithm: A) 8^x = 8 B) 8e^x = 5 C) 8 * 5^x = 8.5e^{-3x}

Solution

Let's go through each equation and solve for xx using natural logarithms:

A) 8x=88^x = 8

Take the natural logarithm of both sides:

ln(8x)=ln(8)\ln(8^x) = \ln(8)

Using the logarithmic identity ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a):

xln(8)=ln(8)x \cdot \ln(8) = \ln(8)

Since ln(8)0\ln(8) \neq 0, divide both sides by ln(8)\ln(8):

x=1x = 1

Answer for A: x=1x = 1


B) 8ex=58e^x = 5

Divide both sides by 8:

ex=58e^x = \frac{5}{8}

Now, take the natural logarithm of both sides:

x=ln(58)x = \ln\left(\frac{5}{8}\right)

This is the exact value of xx. If you need an approximate value:

xln(0.625)0.470x \approx \ln(0.625) \approx -0.470

Answer for B: x0.470x \approx -0.470


C) 85x=8.5e3x8 \cdot 5^x = 8.5e^{-3x}

First, divide both sides by 8:

5x=8.58e3x5^x = \frac{8.5}{8}e^{-3x}

Simplify the fraction:

5x=1.0625e3x5^x = 1.0625e^{-3x}

Take the natural logarithm of both sides:

ln(5x)=ln(1.0625e3x)\ln(5^x) = \ln(1.0625e^{-3x})

Applying the logarithmic identity ln(ab)=ln(a)+ln(b)\ln(a \cdot b) = \ln(a) + \ln(b):

xln(5)=ln(1.0625)+ln(e3x)x \ln(5) = \ln(1.0625) + \ln(e^{-3x})

xln(5)=ln(1.0625)3xx \ln(5) = \ln(1.0625) - 3x

Now, collect the terms involving xx:

xln(5)+3x=ln(1.0625)x \ln(5) + 3x = \ln(1.0625)

Factor out xx:

x(ln(5)+3)=ln(1.0625)x(\ln(5) + 3) = \ln(1.0625)

Solve for xx:

x=ln(1.0625)ln(5)+3x = \frac{\ln(1.0625)}{\ln(5) + 3}

Using a calculator to approximate:

xln(1.0625)ln(5)+30.06061.6094+30.06064.60940.013x \approx \frac{\ln(1.0625)}{\ln(5) + 3} \approx \frac{0.0606}{1.6094 + 3} \approx \frac{0.0606}{4.6094} \approx 0.013

Answer for C: x0.013x \approx 0.013


Would you like further details or explanations on any part?

Related Questions:

  1. How can the logarithmic properties help in simplifying equations?
  2. What are common logarithmic identities used in solving exponential equations?
  3. How does the natural logarithm differ from common logarithms (base 10)?
  4. Can you derive a general formula for solving eax=be^{ax} = b?
  5. What happens when the logarithmic argument is negative or zero?

Tip: When solving exponential equations, remember to isolate the exponential part before applying the logarithm.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential Equations
Natural Logarithms
Logarithmic Identities

Formulas

ln(a^b) = b * ln(a)
ln(a * b) = ln(a) + ln(b)

Theorems

Logarithmic and Exponential Properties

Suitable Grade Level

High School to Early College