Math Problem Statement

Solve sum no 7

Solve for x in the determinant equation for the 3x3 matrix provided in Problem 7.

Solution

To solve Problem 7, let's calculate the determinant of the given 3×33 \times 3 matrix and find the values of xx that satisfy the condition of the determinant being zero.

The matrix is:

x+1 & x+2 & 3 \\ 3 & x+2 & x+1 \\ x+2 & 2 & x+3 \\ \end{vmatrix} = 0$$ ### Step-by-Step Solution 1. **Calculate the Determinant:** Using cofactor expansion along the first row, we have: $$\text{det} = (x+1) \begin{vmatrix} x+2 & x+1 \\ 2 & x+3 \end{vmatrix} - (x+2) \begin{vmatrix} 3 & x+1 \\ x+2 & x+3 \end{vmatrix} + 3 \begin{vmatrix} 3 & x+2 \\ x+2 & 2 \end{vmatrix}$$ 2. **Evaluate Each Minor:** - For the first minor: $$\begin{vmatrix} x+2 & x+1 \\ 2 & x+3 \end{vmatrix} = (x+2)(x+3) - (x+1)(2) = x^2 + 5x + 6 - 2x - 2 = x^2 + 3x + 4$$ - For the second minor: $$\begin{vmatrix} 3 & x+1 \\ x+2 & x+3 \end{vmatrix} = 3(x+3) - (x+1)(x+2) = 3x + 9 - (x^2 + 3x + 2) = -x^2 + 7$$ - For the third minor: $$\begin{vmatrix} 3 & x+2 \\ x+2 & 2 \end{vmatrix} = 3(2) - (x+2)(x+2) = 6 - (x^2 + 4x + 4) = -x^2 - 4x + 2$$ 3. **Substitute and Simplify:** Substitute each minor back into the cofactor expansion

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Determinants
Matrices

Formulas

Determinant of a 3x3 matrix using cofactor expansion
Cofactor expansion formula

Theorems

Cramer's Rule
Properties of Determinants

Suitable Grade Level

Grades 11-12