Math Problem Statement

select all solutions to the equation 2sin^2x + sinx-1=0 on the interval [0, 2pi)

Solution

To solve the equation 2sin2x+sinx1=02\sin^2x + \sin x - 1 = 0 on the interval [0,2π)[0, 2\pi), we follow these steps:


1. Substitution

Let y=sinxy = \sin x. The equation becomes: 2y2+y1=02y^2 + y - 1 = 0


2. Solve the quadratic equation

Using the quadratic formula: y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=2a = 2, b=1b = 1, and c=1c = -1, we get: y=1±124(2)(1)2(2)y = \frac{-1 \pm \sqrt{1^2 - 4(2)(-1)}}{2(2)} y=1±1+84y = \frac{-1 \pm \sqrt{1 + 8}}{4} y=1±94y = \frac{-1 \pm \sqrt{9}}{4} y=1±34y = \frac{-1 \pm 3}{4}


3. Simplify solutions for yy:

y=1+34=24=12y = \frac{-1 + 3}{4} = \frac{2}{4} = \frac{1}{2} y=134=44=1y = \frac{-1 - 3}{4} = \frac{-4}{4} = -1

So, y=12y = \frac{1}{2} or y=1y = -1.


4. Solve for sinx\sin x:

  1. sinx=12\sin x = \frac{1}{2}: x=arcsin(12)    x=π6,5π6x = \arcsin\left(\frac{1}{2}\right) \implies x = \frac{\pi}{6}, \frac{5\pi}{6} (in quadrants I and II where sine is positive).

  2. sinx=1\sin x = -1: x=arcsin(1)    x=3π2x = \arcsin(-1) \implies x = \frac{3\pi}{2} (in quadrant III where sine is -1).


5. Final solutions

The solutions to the equation 2sin2x+sinx1=02\sin^2x + \sin x - 1 = 0 on the interval [0,2π)[0, 2\pi) are: x=π6,5π6,3π2x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}


Would you like a detailed explanation of these steps?

Here are 5 related questions for further practice:

  1. Solve 3sin2x2sinx1=03\sin^2x - 2\sin x - 1 = 0 on [0,2π)[0, 2\pi).
  2. Solve cos2x3cosx+2=0\cos^2x - 3\cos x + 2 = 0 on [0,2π)[0, 2\pi).
  3. Prove that sin2x+cos2x=1\sin^2x + \cos^2x = 1 and use it to solve 2cos2x+3sinx3=02\cos^2x + 3\sin x - 3 = 0.
  4. Determine all solutions of tanx=3\tan x = \sqrt{3} on [0,2π)[0, 2\pi).
  5. Find all solutions for sin2x=0.5\sin 2x = 0.5 on [0,2π)[0, 2\pi).

Tip: Always ensure your calculator or software is set to the correct mode (degrees vs. radians) when solving trigonometric equations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadratic Equations
Unit Circle

Formulas

Quadratic equation formula: ax^2 + bx + c = 0
sin x and arcsin relationships

Theorems

Quadratic formula
Unit Circle: Sine function values

Suitable Grade Level

Grades 10-12