Math Problem Statement

Solve the quadratic equations and related problems from the given assessment image.

Solution

The image contains mathematical assessment questions involving quadratic equations. I'll start solving the problems for you step by step.

ASESMEN SUMATIF 3A

  1. Tentukan Penyelesaian Persamaan Kuadrat (Metode Akar Kuadrat): a. x2=36x^2 = 36 x=±36=±6x = \pm \sqrt{36} = \pm 6

    b. 9n225=09n^2 - 25 = 0 9n2=25n2=259n=±539n^2 = 25 \quad \Rightarrow \quad n^2 = \frac{25}{9} \quad \Rightarrow \quad n = \pm \frac{5}{3}

    c. (y+2)2=100(y+2)^2 = 100 y+2=±100=±10y=2±10y + 2 = \pm \sqrt{100} = \pm 10 \quad \Rightarrow \quad y = -2 \pm 10 y=8 or y=12y = 8 \text{ or } y = -12

  2. Tentukan Akar-Akar dari Persamaan Kuadrat (Metode Pemfaktoran): a. x2+10x=21x2+10x+21=0x^2 + 10x = -21 \quad \Rightarrow \quad x^2 + 10x + 21 = 0 (x+3)(x+7)=0x=3 or x=7(x + 3)(x + 7) = 0 \quad \Rightarrow \quad x = -3 \text{ or } x = -7

    b. x22x24=0x^2 - 2x - 24 = 0 (x6)(x+4)=0x=6 or x=4(x - 6)(x + 4) = 0 \quad \Rightarrow \quad x = 6 \text{ or } x = -4

    c. 2x23x+30=02x^2 - 3x + 30 = 0 (This equation has no real roots since the discriminant is negative.)

  3. Dengan Rumus Kuadrat (ax2+bx+c=0ax^2 + bx + c = 0): a. y2+3y28=0y^2 + 3y - 28 = 0 y=3±324(1)(28)2(1)=3±1212=3±112y = \frac{-3 \pm \sqrt{3^2 - 4(1)(-28)}}{2(1)} = \frac{-3 \pm \sqrt{121}}{2} = \frac{-3 \pm 11}{2} y=4 or y=7y = 4 \text{ or } y = -7

    b. 2x2+x6=02x^2 + x - 6 = 0 x=1±124(2)(6)2(2)=1±494=1±74x = \frac{-1 \pm \sqrt{1^2 - 4(2)(-6)}}{2(2)} = \frac{-1 \pm \sqrt{49}}{4} = \frac{-1 \pm 7}{4} x=32 or x=2x = \frac{3}{2} \text{ or } x = -2

  4. Masalah Persegi Panjang dengan Luas 300 m2m^2:

    • Panjang pp, Lebar l=p5l = p - 5
    • Luas: p(p5)=300p(p - 5) = 300 p25p300=0p^2 - 5p - 300 = 0 Using the quadratic formula: p=(5)±(5)24(1)(300)2(1)=5±12252=5±352p = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-300)}}{2(1)} = \frac{5 \pm \sqrt{1225}}{2} = \frac{5 \pm 35}{2} p=20 or p=15(discard p=15)p = 20 \text{ or } p = -15 \quad (\text{discard } p = -15) p=20,l=205=15p = 20, \quad l = 20 - 5 = 15

Let me know if you'd like further solutions or explanations.

  1. Would you like detailed explanations for a specific step?
  2. Should I solve ASESMEN SUMATIF 3B as well?
  3. Would you like additional examples of solving quadratic equations?
  4. Do you want a deeper explanation of the quadratic formula derivation?
  5. Shall I visualize these solutions with graphs?

Tip: Always check the discriminant (b24acb^2 - 4ac) to see if a quadratic equation has real solutions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quadratic Equations
Factoring
Roots of Equations
Algebraic Operations

Formulas

Quadratic formula: x = [-b ± √(b² - 4ac)] / 2a
Factoring quadratic expressions
Solving equations by taking square roots

Theorems

Properties of quadratic equations
Discriminant rules for real and complex roots

Suitable Grade Level

Grades 9-11