Math Problem Statement

Simplify down to a single integral in terms of xx. Volume =∫4−4∫16−x2√−(16−x2√)∫80−3x2−3z22x2+2z21 dy dz dx=∫4−4=∫−44∫−(16−x2)16−x2∫2x2+2z280−3x2−3z21 dy dz dx=∫−44  dx

Solution

To simplify the expression down to a single integral in terms of xx, let's go through the given integral step by step.

The original expression for the volume is:

4416x216x22x2+2z2803x23z2dydzdx\int_{-4}^{4} \int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} \int_{2x^2 + 2z^2}^{80 - 3x^2 - 3z^2} \, dy \, dz \, dx

Here, the integrand is 1, so we’re essentially integrating over the volume bounded by the given limits.

Step 1: Integrate with respect to yy

The innermost integral is: 2x2+2z2803x23z2dy\int_{2x^2 + 2z^2}^{80 - 3x^2 - 3z^2} \, dy

Since this is an integral with respect to yy with integrand 1, the result is simply the length of the interval in yy: 803x23z2(2x2+2z2)=805x25z280 - 3x^2 - 3z^2 - (2x^2 + 2z^2) = 80 - 5x^2 - 5z^2

Thus, we have:

4416x216x2(805x25z2)dzdx\int_{-4}^{4} \int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} (80 - 5x^2 - 5z^2) \, dz \, dx

Step 2: Integrate with respect to zz

Now, we integrate with respect to zz. This integral becomes: 16x216x2(805x25z2)dz\int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} (80 - 5x^2 - 5z^2) \, dz

This can be split as:

16x216x280dz16x216x25x2dz16x216x25z2dz\int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} 80 \, dz - \int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} 5x^2 \, dz - \int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} 5z^2 \, dz

Let's compute each part individually:

  1. First part: 16x216x280dz=80216x2=16016x2\int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} 80 \, dz = 80 \cdot 2\sqrt{16 - x^2} = 160\sqrt{16 - x^2}

  2. Second part: 16x216x25x2dz=5x2216x2=10x216x2\int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} 5x^2 \, dz = 5x^2 \cdot 2\sqrt{16 - x^2} = 10x^2\sqrt{16 - x^2}

  3. Third part: 16x216x25z2dz\int_{-\sqrt{16 - x^2}}^{\sqrt{16 - x^2}} 5z^2 \, dz

    Since z2z^2 is an even function, we can compute this as: 2016x25z2dz=10016x2z2dz2 \int_{0}^{\sqrt{16 - x^2}} 5z^2 \, dz = 10 \int_{0}^{\sqrt{16 - x^2}} z^2 \, dz

    Substituting z3/3z^3 / 3 for z2z^2, we get: 10[z33]016x2=103(16x2)3/210 \left[ \frac{z^3}{3} \right]_{0}^{\sqrt{16 - x^2}} = \frac{10}{3} (16 - x^2)^{3/2}

Step 3: Combine the Results

Substituting back, we have:

44(16016x210x216x2103(16x2)3/2)dx\int_{-4}^{4} \left( 160\sqrt{16 - x^2} - 10x^2\sqrt{16 - x^2} - \frac{10}{3}(16 - x^2)^{3/2} \right) \, dx

This is now a single integral in terms of xx:

44(16016x210x216x2103(16x2)3/2)dx\int_{-4}^{4} \left( 160\sqrt{16 - x^2} - 10x^2\sqrt{16 - x^2} - \frac{10}{3}(16 - x^2)^{3/2} \right) \, dx

Would you like further details on evaluating this integral, or any particular part of the simplification? Here are some related questions:

  1. How do we evaluate integrals involving square roots?
  2. Can we simplify expressions further by using trigonometric substitutions?
  3. What techniques are best for evaluating definite integrals like this?
  4. How does symmetry affect the integration limits here?
  5. How do we interpret the physical meaning of each part of this integral?

Tip: Symmetry can often simplify integrals, especially when integrating over symmetric bounds.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Triple Integrals
Volume Integration

Formulas

∫ (integral sign)
Volume = ∫∫∫ f(x, y, z) dV
∫_{a}^{b} f(x) dx

Theorems

Fundamental Theorem of Calculus
Symmetry in integrals

Suitable Grade Level

Undergraduate Calculus (College Level)