Math Problem Statement

Simplify and write answers in exponent form using the given base.(t to the power 3) to the power 5

Solution

To simplify (t3)5(t^3)^5 using the given base tt, apply the power of a power rule, which states:

(am)n=amn(a^m)^n = a^{m \cdot n}

In this case: (t3)5=t35=t15(t^3)^5 = t^{3 \cdot 5} = t^{15}

So, the simplified form is: t15t^{15}

Would you like a further breakdown of this rule or have any additional questions?

Here are some related questions to expand on this concept:

  1. How would you simplify (x4)6(x^4)^6?
  2. What is the general formula for (am)n(a^m)^n?
  3. How would you express (y2)8(y^2)^8 in exponential form?
  4. What happens if the exponents are fractions, such as (z1/2)4(z^{1/2})^4?
  5. Can you explain why the power of a power rule works?

Tip: Always multiply the exponents when raising a power to another power, keeping the base unchanged.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Power of a Power Rule

Formulas

(a^m)^n = a^(m * n)

Theorems

Power of a Power Rule

Suitable Grade Level

Grades 6-8