Math Problem Statement

  1. Fully simplify each expression. Show your work so it is evident you simplified and not just input on your calculator. [5 marks] a) √150 b) O2√10PO5√2P c) 3√48 − 5√27 + 2√3 − √32

Solution

Let's simplify each of the given expressions step by step to ensure clarity:


a) Simplify √150

We factorize 150 to simplify the square root:

  1. Factorize 150 into prime factors:
    150=2355150 = 2 \cdot 3 \cdot 5 \cdot 5

  2. Group perfect squares:
    150=5232\sqrt{150} = \sqrt{5^2 \cdot 3 \cdot 2}

  3. Simplify the perfect square (525^2) to 55:
    150=56\sqrt{150} = 5\sqrt{6}

Final Answer:
150=56\sqrt{150} = 5\sqrt{6}


b) Simplify O210PO52PO2\sqrt{10}PO5\sqrt{2}P

Let’s interpret this as the product of two terms: O210O2\sqrt{10} and O52O5\sqrt{2}, where OO and PP are placeholders/constants.

  1. Simplify the square roots and multiply:
    O210O52=(O2O5)(102)O2\sqrt{10} \cdot O5\sqrt{2} = (O2 \cdot O5)(\sqrt{10} \cdot \sqrt{2})

  2. Combine constants and simplify roots:
    O2O5=O210O2 \cdot O5 = O^2 \cdot 10
    102=20=25\sqrt{10} \cdot \sqrt{2} = \sqrt{20} = 2\sqrt{5}

  3. Multiply the results:
    O21025=20O25O^2 \cdot 10 \cdot 2\sqrt{5} = 20O^2\sqrt{5}

Final Answer:
O210PO52P=20O25O2\sqrt{10}PO5\sqrt{2}P = 20O^2\sqrt{5}


c) Simplify 348527+23323\sqrt{48} - 5\sqrt{27} + 2\sqrt{3} - \sqrt{32}

  1. Simplify each term:

    • 48=163=43\sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3}, so 348=343=1233\sqrt{48} = 3 \cdot 4\sqrt{3} = 12\sqrt{3}
    • 27=93=33\sqrt{27} = \sqrt{9 \cdot 3} = 3\sqrt{3}, so 527=533=153-5\sqrt{27} = -5 \cdot 3\sqrt{3} = -15\sqrt{3}
    • 232\sqrt{3} remains as 232\sqrt{3}
    • 32=162=42\sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2}, so 32=42-\sqrt{32} = -4\sqrt{2}
  2. Combine like terms:

    • For 3\sqrt{3} terms:
      123153+23=1312\sqrt{3} - 15\sqrt{3} + 2\sqrt{3} = -1\sqrt{3}
    • The 2\sqrt{2} term is 42-4\sqrt{2}.

Final Answer:
[ 3\sqrt{48} - 5\sqrt{27

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Square Roots
Simplifying Expressions
Factorization

Formulas

√(a * b) = √a * √b
√(a * b * c) = √a * √b * √c

Theorems

Product rule for square roots

Suitable Grade Level

Grades 7-10