Math Problem Statement

((1 + sqrt(5)) ^ 2)/2 - (1 - sqrt(5))/2

Solution

Let's simplify the given expression:

(1+5)22152\frac{(1 + \sqrt{5})^2}{2} - \frac{1 - \sqrt{5}}{2}

Step 1: Expand (1+5)2(1 + \sqrt{5})^2

(1+5)2=12+2(1)(5)+(5)2=1+25+5=6+25(1 + \sqrt{5})^2 = 1^2 + 2(1)(\sqrt{5}) + (\sqrt{5})^2 = 1 + 2\sqrt{5} + 5 = 6 + 2\sqrt{5}

Step 2: Substitute this result back into the expression

6+252152\frac{6 + 2\sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2}

Step 3: Simplify the fractions

=62+25212+52= \frac{6}{2} + \frac{2\sqrt{5}}{2} - \frac{1}{2} + \frac{\sqrt{5}}{2}

=3+512+52= 3 + \sqrt{5} - \frac{1}{2} + \frac{\sqrt{5}}{2}

Step 4: Combine the terms

=(312)+(5+52)= (3 - \frac{1}{2}) + \left(\sqrt{5} + \frac{\sqrt{5}}{2}\right)

=6212+252+52= \frac{6}{2} - \frac{1}{2} + \frac{2\sqrt{5}}{2} + \frac{\sqrt{5}}{2}

=52+352= \frac{5}{2} + \frac{3\sqrt{5}}{2}

Thus, the simplified form of the expression is:

5+352\boxed{\frac{5 + 3\sqrt{5}}{2}}

Would you like more details or further explanations?

Related Questions:

  1. How do you expand binomials like (a+b)2(a + b)^2?
  2. How can you simplify square roots when combining like terms?
  3. What are some common mistakes when simplifying radical expressions?
  4. How does the distributive property help in expanding expressions?
  5. Can this type of expression be simplified further for specific values of 5\sqrt{5}?

Tip: Always combine like terms carefully, especially when dealing with radicals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Radicals
Binomial Expansion
Simplification of Expressions

Formulas

(a + b)^2 = a^2 + 2ab + b^2
Basic Fraction Subtraction: a/b - c/b = (a - c)/b

Theorems

Distributive Property
Basic Properties of Square Roots

Suitable Grade Level

Grades 9-11