Math Problem Statement

Use the laws of logarithms to rewrite the expressions into a single logarithm.

(a) log5 (x 2 1) log5 (x − 1)

(b) ln(a + b) + ln(a − b) 2 ln(c)

(c) 2(log5 (x) + 2 log5 (y) 3 log5 (z))

(d)

1

3 log[(x + 2)3 ] + 1 2  log

Solution

To rewrite each expression into a single logarithm, we’ll use the laws of logarithms, specifically:

  1. Product Rule: logb(M)+logb(N)=logb(MN)\log_b(M) + \log_b(N) = \log_b(M \cdot N)
  2. Quotient Rule: logb(M)logb(N)=logb(MN)\log_b(M) - \log_b(N) = \log_b\left(\frac{M}{N}\right)
  3. Power Rule: nlogb(M)=logb(Mn)n \cdot \log_b(M) = \log_b(M^n)

Let's solve each problem.


(a) log5(x21)log5(x1)\log_5 (x^2 - 1) - \log_5 (x - 1)

Using the Quotient Rule:

log5(x21)log5(x1)=log5(x21x1)\log_5 (x^2 - 1) - \log_5 (x - 1) = \log_5 \left( \frac{x^2 - 1}{x - 1} \right)

Since x21x^2 - 1 can be factored as (x+1)(x1)(x + 1)(x - 1):

log5((x+1)(x1)x1)=log5(x+1)\log_5 \left( \frac{(x + 1)(x - 1)}{x - 1} \right) = \log_5 (x + 1)

So, the simplified form is:

log5(x+1)\log_5 (x + 1)


(b) ln(a+b)+ln(ab)2ln(c)\ln(a + b) + \ln(a - b) - 2 \ln(c)

First, apply the Product Rule to combine the first two terms:

ln(a+b)+ln(ab)=ln((a+b)(ab))\ln(a + b) + \ln(a - b) = \ln((a + b)(a - b))

Now, use the Power Rule for the last term:

2ln(c)=ln(c2)2 \ln(c) = \ln(c^2)

Now we have:

ln((a+b)(ab))ln(c2)\ln((a + b)(a - b)) - \ln(c^2)

Finally, apply the Quotient Rule:

ln((a+b)(ab)c2)\ln \left( \frac{(a + b)(a - b)}{c^2} \right)

So, the simplified form is:

ln((a+b)(ab)c2)\ln \left( \frac{(a + b)(a - b)}{c^2} \right)


(c) 2(log5(x)+2log5(y)3log5(z))2(\log_5 (x) + 2 \log_5 (y) - 3 \log_5 (z))

Distribute the 22 to each term inside the parentheses using the Power Rule:

2log5(x)+4log5(y)6log5(z)2 \log_5 (x) + 4 \log_5 (y) - 6 \log_5 (z)

Now apply the Power Rule to each term:

log5(x2)+log5(y4)log5(z6)\log_5 (x^2) + \log_5 (y^4) - \log_5 (z^6)

Next, use the Product Rule for the first two terms and then the Quotient Rule:

log5(x2y4)log5(z6)=log5(x2y4z6)\log_5 \left( x^2 \cdot y^4 \right) - \log_5 (z^6) = \log_5 \left( \frac{x^2 y^4}{z^6} \right)

So, the simplified form is:

log5(x2y4z6)\log_5 \left( \frac{x^2 y^4}{z^6} \right)


(d) 13log((x+2)3)+12log(y)\frac{1}{3} \log((x + 2)^3) + \frac{1}{2} \log(y)

Use the Power Rule for each term:

13log((x+2)3)=log((x+2))\frac{1}{3} \log((x + 2)^3) = \log((x + 2)) [ \frac{1}{2} \log(y

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Functions
Logarithmic Laws
Algebra

Formulas

Product Rule: log_b(M) + log_b(N) = log_b(M * N)
Quotient Rule: log_b(M) - log_b(N) = log_b(M / N)
Power Rule: n * log_b(M) = log_b(M^n)

Theorems

Properties of Logarithms

Suitable Grade Level

Grades 10-12