Math Problem Statement

2 (4/logbase5 4) + (3/log base7 8)

Solution

We need to simplify the given expression:

2(4log54)+(3log78)2 \left(\frac{4}{\log_5 4}\right) + \left(\frac{3}{\log_7 8}\right)

Step 1: Apply Change of Base Formula

Using the change of base formula:

logba=logalogb\log_b a = \frac{\log a}{\log b}

we rewrite the logarithmic terms:

log54=log4log5,log78=log8log7\log_5 4 = \frac{\log 4}{\log 5}, \quad \log_7 8 = \frac{\log 8}{\log 7}

Step 2: Rewrite the Expression

Substituting these values:

4log54=4log4log5=4×log5log4=4log5log4\frac{4}{\log_5 4} = \frac{4}{\frac{\log 4}{\log 5}} = 4 \times \frac{\log 5}{\log 4} = \frac{4 \log 5}{\log 4}

3log78=3log8log7=3×log7log8=3log7log8\frac{3}{\log_7 8} = \frac{3}{\frac{\log 8}{\log 7}} = 3 \times \frac{\log 7}{\log 8} = \frac{3 \log 7}{\log 8}

Step 3: Compute the Final Expression

2×4log5log4+3log7log82 \times \frac{4 \log 5}{\log 4} + \frac{3 \log 7}{\log 8}

8log5log4+3log7log8\frac{8 \log 5}{\log 4} + \frac{3 \log 7}{\log 8}

Now, let’s compute the numerical value.

Using common logarithm values:

log40.6021,log50.6990,log70.8451,log80.9031\log 4 \approx 0.6021, \quad \log 5 \approx 0.6990, \quad \log 7 \approx 0.8451, \quad \log 8 \approx 0.9031

8×0.69900.6021+3×0.84510.9031\frac{8 \times 0.6990}{0.6021} + \frac{3 \times 0.8451}{0.9031}

5.5920.6021+2.53530.9031\frac{5.592}{0.6021} + \frac{2.5353}{0.9031}

9.29+2.81=12.109.29 + 2.81 = 12.10

Final Answer:

12.10\mathbf{12.10}

Would you like a more detailed breakdown?

Related Questions:

  1. How does the change of base formula work in logarithms?
  2. What are some real-life applications of logarithms?
  3. How do you simplify expressions involving multiple logarithmic bases?
  4. What is the significance of logarithms in computing?
  5. How do you solve logarithmic equations?

Tip:
When working with logarithms in calculations, always check if base conversion simplifies the problem!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Change of Base Formula
Algebraic Expressions

Formulas

Change of Base Formula: log_b(a) = log(a) / log(b)
Logarithmic Properties

Theorems

Change of Base Formula

Suitable Grade Level

Grades 9-12