Math Problem Statement

how did you simplify e^(2ix)-e^(-2ix)

Solution

The expression e2ixe2ixe^{2ix} - e^{-2ix} can be simplified using Euler's formula, which states:

eix=cos(x)+isin(x)e^{ix} = \cos(x) + i\sin(x) and eix=cos(x)isin(x)e^{-ix} = \cos(x) - i\sin(x)

Step-by-Step Simplification:

  1. Apply Euler's formula: Using Euler's formula, we rewrite e2ixe^{2ix} and e2ixe^{-2ix}:

    e2ix=cos(2x)+isin(2x)e^{2ix} = \cos(2x) + i\sin(2x) e2ix=cos(2x)isin(2x)e^{-2ix} = \cos(2x) - i\sin(2x)

  2. Subtract the two expressions:

    e2ixe2ix=(cos(2x)+isin(2x))(cos(2x)isin(2x))e^{2ix} - e^{-2ix} = (\cos(2x) + i\sin(2x)) - (\cos(2x) - i\sin(2x))

  3. Simplify: Group the real and imaginary terms:

    e2ixe2ix=cos(2x)cos(2x)+isin(2x)+isin(2x)e^{2ix} - e^{-2ix} = \cos(2x) - \cos(2x) + i\sin(2x) + i\sin(2x)

    The real parts cos(2x)cos(2x)\cos(2x) - \cos(2x) cancel out, and we are left with:

    e2ixe2ix=2isin(2x)e^{2ix} - e^{-2ix} = 2i\sin(2x)

Final Simplified Form:

e2ixe2ix=2isin(2x)e^{2ix} - e^{-2ix} = 2i\sin(2x)

This is the simplified expression.


Would you like a further breakdown or any other details?


Related Questions:

  1. What is Euler's formula, and how is it derived?
  2. How does the simplification change if the exponents were different, like eixeixe^{ix} - e^{-ix}?
  3. Can sin(2x)\sin(2x) be expanded further using trigonometric identities?
  4. How can this expression be useful in solving differential equations involving complex exponentials?
  5. What is the relationship between this result and the Fourier series?

Tip:

When dealing with complex exponentials, Euler's formula is your best friend for simplifying expressions into trigonometric terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Exponential Functions
Trigonometry

Formulas

Euler's formula: e^(ix) = cos(x) + i*sin(x)
e^(2ix) - e^(-2ix) = 2i*sin(2x)

Theorems

Euler's Theorem

Suitable Grade Level

Grades 11-12, College Level