Math Problem Statement

Simplify the radicals and then combine like radicals: 7 * ∛54 + 2 * ∛128.

Solution

The given expression is:

[ 7 \cdot \sqrt[3]{54} + 2 \cdot \sqrt[3]{128} ]

We need to simplify each radical and then combine the like terms.

Step 1: Simplify 543\sqrt[3]{54}

The number 54 can be factored as: 54=2×3354 = 2 \times 3^3 So, we can simplify 543\sqrt[3]{54} as: [ \sqrt[3]{54} = \sqrt[3]{2 \times 3^3} = 3 \cdot \sqrt[3]{2} ]

Now, the first term becomes: [ 7 \cdot 3 \cdot \sqrt[3]{2} = 21 \cdot \sqrt[3]{2} ]

Step 2: Simplify 1283\sqrt[3]{128}

The number 128 can be factored as: 128=27128 = 2^7 So, we can simplify 1283\sqrt[3]{128} as: [ \sqrt[3]{128} = \sqrt[3]{2^7} = 2^2 \cdot \sqrt[3]{2} = 4 \cdot \sqrt[3]{2} ]

Now, the second term becomes: [ 2 \cdot 4 \cdot \sqrt[3]{2} = 8 \cdot \sqrt[3]{2} ]

Step 3: Combine like terms

Both terms involve 23\sqrt[3]{2}, so we can combine them: [ 21 \cdot \sqrt[3]{2} + 8 \cdot \sqrt[3]{2} = (21 + 8) \cdot \sqrt[3]{2} = 29 \cdot \sqrt[3]{2} ]

Final Answer:

292329 \cdot \sqrt[3]{2}

Would you like more details or have any questions? Here are some related problems:

  1. Simplify 5163+33235 \cdot \sqrt[3]{16} + 3 \cdot \sqrt[3]{32}.
  2. Find the value of 22503+450032 \cdot \sqrt[3]{250} + 4 \cdot \sqrt[3]{500}.
  3. Simplify 543+2503\sqrt[3]{54} + \sqrt[3]{250}.
  4. Combine 9273+38139 \cdot \sqrt[3]{27} + 3 \cdot \sqrt[3]{81}.
  5. Simplify 65003+46436 \cdot \sqrt[3]{500} + 4 \cdot \sqrt[3]{64}.

Tip: When simplifying cube roots, look for the largest perfect cube factor of the number under the radical!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Cube Roots
Simplifying Radicals
Combining Like Radicals

Formulas

∛a * b = a * ∛b

Theorems

-

Suitable Grade Level

Grades 8-10