Math Problem Statement

Simplify the expression: \( \frac{\tan^2 \theta (\sec^2 \theta - 1)}{\sin^2 \theta} \)

Solution

Let's simplify the given expression:

tan2θ(sec2θ1)sin2θ\frac{\tan^2 \theta (\sec^2 \theta - 1)}{\sin^2 \theta}

Step 1: Use the Trigonometric Identity

We know that:

sec2θ1=tan2θ\sec^2 \theta - 1 = \tan^2 \theta

Using this identity, we substitute:

tan2θ(tan2θ)sin2θ\frac{\tan^2 \theta (\tan^2 \theta)}{\sin^2 \theta}

=tan4θsin2θ= \frac{\tan^4 \theta}{\sin^2 \theta}

Step 2: Express in Terms of Sine and Cosine

Since tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}, we rewrite:

tan4θ=(sinθcosθ)4=sin4θcos4θ\tan^4 \theta = \left(\frac{\sin \theta}{\cos \theta}\right)^4 = \frac{\sin^4 \theta}{\cos^4 \theta}

Thus, our expression becomes:

sin4θcos4θsin2θ\frac{\frac{\sin^4 \theta}{\cos^4 \theta}}{\sin^2 \theta}

Step 3: Simplify the Fraction

=sin4θcos4θ×1sin2θ= \frac{\sin^4 \theta}{\cos^4 \theta} \times \frac{1}{\sin^2 \theta}

=sin2θcos4θ= \frac{\sin^2 \theta}{\cos^4 \theta}

=sin2θcos2θcos2θ= \frac{\sin^2 \theta}{\cos^2 \theta \cdot \cos^2 \theta}

Since sin2θcos2θ=tan2θ\frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta, we obtain:

tan2θcos2θ\frac{\tan^2 \theta}{\cos^2 \theta}

Final Answer:

tan2θcos2θ\frac{\tan^2 \theta}{\cos^2 \theta}

Let me know if you need further clarification!


Related Questions:

  1. What are the fundamental Pythagorean identities in trigonometry?
  2. How do you derive sec2θ1=tan2θ\sec^2 \theta - 1 = \tan^2 \theta?
  3. Why is expressing trigonometric functions in terms of sine and cosine useful?
  4. What is an alternative way to simplify this expression using a different approach?
  5. How does the simplification change if a different trigonometric identity is used?

Tip: Always check for fundamental trigonometric identities when simplifying expressions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric identities
Simplification of expressions
Sine, Cosine, and Tangent relationships

Formulas

\( \sec^2 \theta - 1 = \tan^2 \theta \)
\( \tan \theta = \frac{\sin \theta}{\cos \theta} \)

Theorems

Pythagorean identities in trigonometry

Suitable Grade Level

Grades 9-12