Math Problem Statement

(√5 + √2/ 2√5 -√2)²

Solution

To simplify the expression (5+2252)2\left( \frac{\sqrt{5} + \sqrt{2}}{2\sqrt{5} - \sqrt{2}} \right)^2, we can proceed in steps as follows:

  1. Rewrite the expression: (5+2252)2\left( \frac{\sqrt{5} + \sqrt{2}}{2\sqrt{5} - \sqrt{2}} \right)^2

  2. Simplify the fraction inside the square by rationalizing the denominator. To do this, multiply both the numerator and the denominator by the conjugate of the denominator, 25+22\sqrt{5} + \sqrt{2}:

    5+225225+225+2\frac{\sqrt{5} + \sqrt{2}}{2\sqrt{5} - \sqrt{2}} \cdot \frac{2\sqrt{5} + \sqrt{2}}{2\sqrt{5} + \sqrt{2}}

  3. Expand both the numerator and the denominator:

    • In the numerator: (5+2)(25+2)=525+52+225+22(\sqrt{5} + \sqrt{2})(2\sqrt{5} + \sqrt{2}) = \sqrt{5} \cdot 2\sqrt{5} + \sqrt{5} \cdot \sqrt{2} + \sqrt{2} \cdot 2\sqrt{5} + \sqrt{2} \cdot \sqrt{2} Simplifying each term: [ = 2 \cdot 5 + \sqrt{10} + 2\sqrt{10} + 2 = 10

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Rationalization
Exponentiation

Formulas

Rationalization formula: (a + b)(a - b) = a^2 - b^2
Exponentiation: (a/b)^2 = a^2 / b^2

Theorems

-

Suitable Grade Level

Grades 10-12