Math Problem Statement

Given x > 0, express in simplest radical form with a rational denominator: \( \frac{\sqrt{8x^{10}}}{\sqrt{8x^3}} \).

Solution

To solve the given problem, we need to simplify the expression 8x108x3\frac{\sqrt{8x^{10}}}{\sqrt{8x^3}}.

First, use the property of radicals: ab=ab\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}.

8x108x3=8x108x3\frac{\sqrt{8x^{10}}}{\sqrt{8x^3}} = \sqrt{\frac{8x^{10}}{8x^3}}

Simplify the expression inside the square root:

8x108x3=x103=x7\frac{8x^{10}}{8x^3} = x^{10-3} = x^7

Thus, the expression becomes:

x7\sqrt{x^7}

Express x7\sqrt{x^7} in simplest radical form:

x7=x6x=(x3)2x=x3x\sqrt{x^7} = \sqrt{x^6 \cdot x} = \sqrt{(x^3)^2 \cdot x} = x^3\sqrt{x}

So, the simplified expression is:

x3xx^3\sqrt{x}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Radical Expressions
Simplifying Expressions
Exponents and Radicals

Formulas

\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)
Simplifying \( x^m / x^n = x^{m-n} \)
Simplifying \( \sqrt{x^n} = x^{n/2} \)

Theorems

Properties of Exponents
Simplifying Radicals

Suitable Grade Level

Grades 9-11