Math Problem Statement

Simplify the expression \( \frac{\sqrt[3]{a} \cdot \sqrt[3]{a^2}}{\sqrt[4]{a^3} \cdot \sqrt[4]{a}} \).

Solution

To simplify this expression, we can first rewrite each component using fractional exponents. Here’s how it works:

Given Expression

[ \frac{\sqrt[3]{a} \cdot \sqrt[3]{a^2}}{\sqrt[4]{a^3} \cdot \sqrt[4]{a}} ]

Step 1: Convert to Exponents

Using the rule that xmn=xmn\sqrt[n]{x^m} = x^{\frac{m}{n}}, we can rewrite each term:

  1. a3=a13\sqrt[3]{a} = a^{\frac{1}{3}}
  2. a23=a23\sqrt[3]{a^2} = a^{\frac{2}{3}}
  3. a34=a34\sqrt[4]{a^3} = a^{\frac{3}{4}}
  4. a4=a14\sqrt[4]{a} = a^{\frac{1}{4}}

Step 2: Substitute and Simplify

Substituting these values back into the expression, we get:

a13a23a34a14\frac{a^{\frac{1}{3}} \cdot a^{\frac{2}{3}}}{a^{\frac{3}{4}} \cdot a^{\frac{1}{4}}}

Step 3: Combine Exponents

Using the property aman=am+na^m \cdot a^n = a^{m+n}, we can simplify the numerator and denominator separately:

  1. Numerator: a13+23=a33=a1=aa^{\frac{1}{3} + \frac{2}{3}} = a^{\frac{3}{3}} = a^1 = a
  2. Denominator: a34+14=a44=a1=aa^{\frac{3}{4} + \frac{1}{4}} = a^{\frac{4}{4}} = a^1 = a

So the expression simplifies to:

aa=1\frac{a}{a} = 1

Final Answer

11

Would you like further details or have any questions?


Here are some related questions for practice:

  1. How would you simplify b23b33b54b4\frac{\sqrt[3]{b^2} \cdot \sqrt[3]{b^3}}{\sqrt[4]{b^5} \cdot \sqrt[4]{b}}?
  2. What is the value of x45x5x56\frac{\sqrt[5]{x^4} \cdot \sqrt[5]{x}}{\sqrt[6]{x^5}}?
  3. How do you handle fractional exponents in expressions like y34y6\frac{\sqrt[4]{y^3}}{\sqrt[6]{y}}?
  4. How can you simplify a84a93\sqrt[4]{a^8} \cdot \sqrt[3]{a^9}?
  5. What is the general rule for simplifying expressions involving radicals and powers?

Tip: When working with radicals, converting to fractional exponents can often make simplification easier, especially when multiplying or dividing terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Radicals
Fractional Exponents
Exponent Rules

Formulas

nth root of x^m = x^(m/n)
a^m * a^n = a^(m+n)

Theorems

Properties of Exponents
Properties of Radicals

Suitable Grade Level

Grades 10-12