Math Problem Statement

The expression (9x4y3 + 10x2y + 2xy) - (7x4y3 - 5x2y + 7xy)

represents the time Tamara and Patrick will meet for brunch.

Simplify and write your answer in the order of descending exponents of x.

Solution

To simplify the expression:

(9x4y3+10x2y+2xy)(7x4y35x2y+7xy)(9x^4y^3 + 10x^2y + 2xy) - (7x^4y^3 - 5x^2y + 7xy)

we'll distribute the subtraction and then combine like terms.

Step 1: Distribute the Negative Sign

=9x4y3+10x2y+2xy7x4y3+5x2y7xy= 9x^4y^3 + 10x^2y + 2xy - 7x^4y^3 + 5x^2y - 7xy

Step 2: Combine Like Terms

Group the terms with the same powers of xx and yy:

  • Terms with x4y3x^4y^3: 9x4y37x4y3=2x4y39x^4y^3 - 7x^4y^3 = 2x^4y^3
  • Terms with x2yx^2y: 10x2y+5x2y=15x2y10x^2y + 5x^2y = 15x^2y
  • Terms with xyxy: 2xy7xy=5xy2xy - 7xy = -5xy

Simplified Expression

=2x4y3+15x2y5xy= 2x^4y^3 + 15x^2y - 5xy

The expression in descending order of exponents of xx is:

2x4y3+15x2y5xy\boxed{2x^4y^3 + 15x^2y - 5xy}

Would you like further clarification on any steps?


Here are some related questions for further practice:

  1. How would the result change if all xx-terms were squared?
  2. What if the subtraction was replaced by addition in the original expression?
  3. How would you factor out a common term if one exists?
  4. How would this expression simplify if x=yx = y?
  5. What would the expression look like if all terms with yy were set to zero?

Tip: Always organize terms in descending order to simplify reading and analyzing expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Simplification
Like Terms

Formulas

Combining like terms: ax^m*y^n ± bx^m*y^n = (a ± b)x^m*y^n

Theorems

-

Suitable Grade Level

Grades 8-10