Math Problem Statement

Simplify each of the following logarithmic expressions: (a) (log x^5 + 4log x) / log x^3, (b) log_2 x - 3log_8 x, (c) (log_125 x^3) / (log_25 ³√x), where x > 0 and x ≠ 1.

Solution

Let's simplify each of the given logarithmic expressions step-by-step:


(a) logx5+4logxlogx3\frac{\log x^5 + 4 \log x}{\log x^3}

Step 1: Simplify the numerator logx5+4logx\log x^5 + 4 \log x:

Using the logarithmic power rule logxn=nlogx\log x^n = n \log x: logx5=5logx\log x^5 = 5 \log x So the numerator becomes: 5logx+4logx=9logx5 \log x + 4 \log x = 9 \log x

Step 2: Simplify the denominator logx3\log x^3:

Using the same power rule: logx3=3logx\log x^3 = 3 \log x

Step 3: Combine the numerator and denominator: 9logx3logx\frac{9 \log x}{3 \log x} Cancel out logx\log x (since x>0x > 0 and x1x \neq 1): 93=3\frac{9}{3} = 3

Final Answer for (a): 33


(b) log2x3log8x\log_2 x - 3 \log_8 x

Step 1: Rewrite log8x\log_8 x in terms of base 2:

Using the change of base formula logab=logcblogca\log_a b = \frac{\log_c b}{\log_c a}, we rewrite: log8x=log2xlog28\log_8 x = \frac{\log_2 x}{\log_2 8} Since 8=238 = 2^3, log28=3\log_2 8 = 3. Thus: log8x=log2x3\log_8 x = \frac{\log_2 x}{3}

Step 2: Substitute back into the expression: log2x3log8x=log2x3(log2x3)\log_2 x - 3 \log_8 x = \log_2 x - 3 \left(\frac{\log_2 x}{3}\right)

Step 3: Simplify: The second term becomes: 3log2x3=log2x3 \cdot \frac{\log_2 x}{3} = \log_2 x Thus: log2xlog2x=0\log_2 x - \log_2 x = 0

Final Answer for (b): 00


(c) log125x3log25x3\frac{\log_{125} x^3}{\log_{25} \sqrt[3]{x}}

Step 1: Simplify log125x3\log_{125} x^3:

Using the logarithmic power rule: log125x3=3log125x\log_{125} x^3 = 3 \log_{125} x

Step 2: Simplify log25x3\log_{25} \sqrt[3]{x}:

Since x3=x1/3\sqrt[3]{x} = x^{1/3}, we apply the power rule: log25x3=13log25x\log_{25} \sqrt[3]{x} = \frac{1}{3} \log_{25} x

Step 3: Combine the numerator and denominator: log125x3log25x3=3log125x13log25x\frac{\log_{125} x^3}{\log_{25} \sqrt[3]{x}} = \frac{3 \log_{125} x}{\frac{1}{3} \log_{25} x}

Simplify the fraction by multiplying numerator and denominator by 3: 3log125x13log25x=9log125xlog25x\frac{3 \log_{125} x}{\frac{1}{3} \log_{25} x} = \frac{9 \log_{125} x}{\log_{25} x}

Step 4: Rewrite log125x\log_{125} x and log25x\log_{25} x in terms of base 5:

Using the change of base formula, we know: log125x=log5xlog5125,log25x=log5xlog525\log_{125} x = \frac{\log_5 x}{\log_5 125}, \quad \log_{25} x = \frac{\log_5 x}{\log_5 25} Since 125=53125 = 5^3, log5125=3\log_5 125 = 3. Similarly, since 25=5225 = 5^2, log525=2\log_5 25 = 2. Thus: log125x=log5x3,log25x=log5x2\log_{125} x = \frac{\log_5 x}{3}, \quad \log_{25} x = \frac{\log_5 x}{2}

Step 5: Substitute back into the expression: 9log125xlog25x=9log5x3log5x2\frac{9 \log_{125} x}{\log_{25} x} = \frac{9 \cdot \frac{\log_5 x}{3}}{\frac{\log_5 x}{2}}

Simplify: 9log5x3log5x2=9321=32=6\frac{9 \cdot \frac{\log_5 x}{3}}{\frac{\log_5 x}{2}} = \frac{9}{3} \cdot \frac{2}{1} = 3 \cdot 2 = 6

Final Answer for (c): 66


Summary of Answers:

(a) 33
(b) 00
(c) 66

Let me know if you need detailed steps for any part or further clarification!


Related Questions:

  1. What is the change of base formula, and how is it applied in logarithms?
  2. How does the logarithmic power rule simplify expressions with exponents?
  3. Why is it valid to cancel out logx\log x in the numerator and denominator in part (a)?
  4. How do you convert logarithms with different bases (e.g., log125\log_{125}) into base 10 or another base?
  5. What are the common logarithmic properties used to simplify expressions?

Tip: Always check if a logarithmic term can be expressed in terms of another base, as this often simplifies the calculation process!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponents
Change of Base Formula
Simplification of Expressions

Formulas

log_a b = log_c b / log_c a (Change of Base Formula)
log x^n = n log x (Power Rule)
log(ab) = log a + log b (Product Rule)
log(a/b) = log a - log b (Quotient Rule)

Theorems

Logarithmic Properties
Change of Base Theorem

Suitable Grade Level

Grades 10-12