Math Problem Statement

write this using properites of logs log6[(a/b)^4 x c]

Solution

To express log6[(ab)4c]\log_6\left[\left(\frac{a}{b}\right)^4 \cdot c\right] using the properties of logarithms, follow these steps:

  1. Apply the logarithm to the product: [ \log_6\left[\left(\frac{a}{b}\right)^4 \cdot c\right] = \log_6\left[\left(\frac{a}{b}\right)^4\right] + \log_6(c) ]

  2. Apply the logarithm to the quotient inside: log6[(ab)4]=4log6(ab)\log_6\left[\left(\frac{a}{b}\right)^4\right] = 4 \cdot \log_6\left(\frac{a}{b}\right)

  3. Break down the logarithm of the quotient: log6(ab)=log6(a)log6(b)\log_6\left(\frac{a}{b}\right) = \log_6(a) - \log_6(b)

  4. Combine everything: log6[(ab)4c]=4(log6(a)log6(b))+log6(c)\log_6\left[\left(\frac{a}{b}\right)^4 \cdot c\right] = 4\left(\log_6(a) - \log_6(b)\right) + \log_6(c)

So, the final expression is: log6[(ab)4c]=4log6(a)4log6(b)+log6(c)\log_6\left[\left(\frac{a}{b}\right)^4 \cdot c\right] = 4\log_6(a) - 4\log_6(b) + \log_6(c)

Would you like any further explanation or have questions on this?

Here are five related questions:

  1. How can you express logb(xy)\log_b(x \cdot y) using properties of logarithms?
  2. What is the general rule for the logarithm of a power, like logb(xn)\log_b(x^n)?
  3. How would you simplify log6(a2b3)\log_6\left(a^2 \cdot b^3\right)?
  4. Can you explain how to apply the change of base formula to logarithms?
  5. What happens if the base of the logarithm matches the argument, such as log6(6)\log_6(6)?

Tip: Remember that the logarithmic properties allow you to break down complex expressions into simpler terms, which is helpful when solving logarithmic equations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Properties of Logarithms
Algebra

Formulas

log_b(x * y) = log_b(x) + log_b(y)
log_b(x / y) = log_b(x) - log_b(y)
log_b(x^n) = n * log_b(x)

Theorems

Properties of Logarithms

Suitable Grade Level

Grades 9-12