Math Problem Statement

x2+4x+4+y2-2y+1-x2-2x+1-y2-6y-1

Solution

Let's simplify the given expression step by step:

The given expression is:

x2+4x+4+y22y+1x22x+1y26y1x^2 + 4x + 4 + y^2 - 2y + 1 - x^2 - 2x + 1 - y^2 - 6y - 1

Step 1: Group like terms

Separate terms involving x2x^2, xx, y2y^2, yy, and constants:

(x2x2)+(4x2x)+(y2y2)+(2y6y)+(4+1+11)(x^2 - x^2) + (4x - 2x) + (y^2 - y^2) + (-2y - 6y) + (4 + 1 + 1 - 1)

Step 2: Simplify each group

  • x2x2=0x^2 - x^2 = 0
  • 4x2x=2x4x - 2x = 2x
  • y2y2=0y^2 - y^2 = 0
  • 2y6y=8y-2y - 6y = -8y
  • 4+1+11=54 + 1 + 1 - 1 = 5

Step 3: Combine the results

0+2x+08y+5=2x8y+50 + 2x + 0 - 8y + 5 = 2x - 8y + 5

Final Simplified Expression:

2x8y+52x - 8y + 5

Let me know if you would like further clarification or assistance!


Related Questions:

  1. What is the difference between combining like terms and factoring?
  2. How can I represent this simplified expression graphically?
  3. What role do constants play in equations like these?
  4. How do coefficients affect the behavior of terms in an equation?
  5. How do you identify like terms in a polynomial expression?

Tip:

When simplifying expressions, carefully group and simplify each term step by step to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Simplification of Expressions
Combining Like Terms

Formulas

Combining like terms: ax + bx = (a+b)x

Theorems

Distributive Property

Suitable Grade Level

Grades 6-8