Math Problem Statement

Simplity

  • (sqrt(3 * 5 ^ - 3)) / (sqrt(3 ^ - 1)) * sqrt(5) * root(3 * 5 ^ 4, 5)

Solution

Let's simplify the given expression:

35331×5×3545\frac{\sqrt{3 \cdot 5^{-3}}}{\sqrt{3^{-1}}} \times \sqrt{5} \times \sqrt[5]{3 \cdot 5^4}

Step-by-step simplification:

  1. Simplify the square roots:

    • 353\sqrt{3 \cdot 5^{-3}} can be written as 3×53=3×532\sqrt{3} \times \sqrt{5^{-3}} = \sqrt{3} \times 5^{-\frac{3}{2}}.
    • 31=312\sqrt{3^{-1}} = 3^{-\frac{1}{2}}.

    So the first part of the expression becomes:

    3×532312\frac{\sqrt{3} \times 5^{-\frac{3}{2}}}{3^{-\frac{1}{2}}}

  2. Simplify this fraction: Using the properties of exponents:

    3312=312+12=31=3\frac{\sqrt{3}}{3^{-\frac{1}{2}}} = 3^{\frac{1}{2} + \frac{1}{2}} = 3^1 = 3

    So the expression simplifies to:

    3×5323 \times 5^{-\frac{3}{2}}

  3. Include the rest of the expression: Now include the rest of the terms: 5×3545\sqrt{5} \times \sqrt[5]{3 \cdot 5^4}.

    Let's simplify 3545\sqrt[5]{3 \cdot 5^4}:

    • (\sqrt[5]{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Square Roots
Radicals
Simplification

Formulas

sqrt(a * b) = sqrt(a) * sqrt(b)
a^m / a^n = a^(m-n)
nth root(a^m) = a^(m/n)

Theorems

Exponent Rules
Root and Radical Properties

Suitable Grade Level

Grades 9-11