Math Problem Statement

B=(x+2)^2/x . (1-x^2/x+2)-x^2+6x+4/x

Solution

Let's break down and simplify the given expression:

B=(x+2)2x(1x2x+2)x2+6x+4xB = \frac{(x+2)^2}{x} \cdot \left( 1 - \frac{x^2}{x+2} \right) - \frac{x^2 + 6x + 4}{x}

Step 1: Simplify each part of the expression

  1. Simplifying the first part:
    (x+2)2x(1x2x+2)\frac{(x+2)^2}{x} \cdot \left( 1 - \frac{x^2}{x+2} \right)

    • First, simplify the term inside the parentheses: 1x2x+2=(x+2)x2x+2=x+2x2x+21 - \frac{x^2}{x+2} = \frac{(x+2) - x^2}{x+2} = \frac{x + 2 - x^2}{x+2} which simplifies to: 2x2+xx+2\frac{2 - x^2 + x}{x+2}
    • Now multiply it by (x+2)2x\frac{(x+2)^2}{x}: (x+2)2x2x2+xx+2\frac{(x+2)^2}{x} \cdot \frac{2 - x^2 + x}{x+2} Notice that (x+2)(x+2) cancels out, so the expression simplifies to: (x+2)(2x2+x)x\frac{(x+2)(2 - x^2 + x)}{x}
  2. Simplifying the second part:
    x2+6x+4x- \frac{x^2 + 6x + 4}{x} This term is already in a simplified form.

Step 2: Combine both parts

Now combine the two parts:

B=(x+2)(2x2+x)xx2+6x+4xB = \frac{(x+2)(2 - x^2 + x)}{x} - \frac{x^2 + 6x + 4}{x}

Both terms have a denominator of xx, so we can combine them:

B=(x+2)(2x2+x)(x2+6x+4)xB = \frac{(x+2)(2 - x^2 + x) - (x^2 + 6x + 4)}{x}

Step 3: Expand the numerator

Expand the first term in the numerator:

(x+2)(2x2+x)=x(2x2+x)+2(2x2+x)(x+2)(2 - x^2 + x) = x(2 - x^2 + x) + 2(2 - x^2 + x) =x(2)x(x2)+x(x)+2(2)2(x2)+2(x)= x(2) - x(x^2) + x(x) + 2(2) - 2(x^2) + 2(x) =2xx3+x2+42x2+2x= 2x - x^3 + x^2 + 4 - 2x^2 + 2x Simplify the result: =x3+x22x2+2x+2x+4= -x^3 + x^2 - 2x^2 + 2x + 2x + 4 =x3x2+4x+4= -x^3 - x^2 + 4x + 4

Now subtract (x2+6x+4)(x^2 + 6x + 4) from this:

(x3x2+4x+4)(x2+6x+4)(-x^3 - x^2 + 4x + 4) - (x^2 + 6x + 4) =x3x2+4x+4x26x4= -x^3 - x^2 + 4x + 4 - x^2 - 6x - 4 =x32x22x= -x^3 - 2x^2 - 2x

Step 4: Final expression

Now, place this simplified numerator over xx:

B=x32x22xxB = \frac{-x^3 - 2x^2 - 2x}{x}

Finally, simplify each term:

B=x22x2B = -x^2 - 2x - 2

So, the simplified expression for BB is:

B=x22x2B = -x^2 - 2x - 2

Would you like more details or further steps? Here are some related questions to explore:

  1. How do you factor the expression x22x2-x^2 - 2x - 2?
  2. What happens to BB when x=0x = 0?
  3. How can you find the roots of the quadratic expression x22x2-x^2 - 2x - 2?
  4. How can you graph the function B=x22x2B = -x^2 - 2x - 2?
  5. What would the expression BB look like if the term (x+2)(x+2) was replaced with (x2)(x-2)?

Tip: Always check for possible factorizations when you reach a simplified polynomial—sometimes it reveals additional insights!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Simplification of Rational Expressions
Multiplying Polynomials

Formulas

(a+b)^2 = a^2 + 2ab + b^2
Distributive Property
Simplifying Rational Expressions

Theorems

Factorization
Polynomial Multiplication

Suitable Grade Level

Grades 9-11