Math Problem Statement

Find all second-order partial derivatives for the function f(x, y, z) = (x^2 y^6 / z^3) - 2x^6 z + 8y^(-3) x^4 + 4z^2.

Solution

To find all second-order partial derivatives of the function f(x,y,z)=x2y6z32x6z+8y3x4+4z2f(x, y, z) = \frac{x^2 y^6}{z^3} - 2x^6 z + 8y^{-3} x^4 + 4z^2, we need to compute the following derivatives:

  1. First, let's compute the first partial derivatives with respect to xx, yy, and zz:

    fx=x(x2y6z32x6z+8y3x4+4z2)f_x = \frac{\partial}{\partial x} \left(\frac{x^2 y^6}{z^3} - 2x^6 z + 8y^{-3} x^4 + 4z^2\right)

    =2xy6z312x5z+32y3x3= \frac{2xy^6}{z^3} - 12x^5 z + 32y^{-3} x^3

    fy=y(x2y6z32x6z+8y3x4+4z2)f_y = \frac{\partial}{\partial y} \left(\frac{x^2 y^6}{z^3} - 2x^6 z + 8y^{-3} x^4 + 4z^2\right)

    =6x2y5z324y4x4= \frac{6x^2 y^5}{z^3} - 24y^{-4} x^4

    fz=z(x2y6z32x6z+8y3x4+4z2)f_z = \frac{\partial}{\partial z} \left(\frac{x^2 y^6}{z^3} - 2x^6 z + 8y^{-3} x^4 + 4z^2\right)

    =3x2y6z42x6+8z= -\frac{3x^2 y^6}{z^4} - 2x^6 + 8z

  2. Now, compute the second-order partial derivatives:

    • Second partial derivatives with respect to xx:

      fxx=x(fx)=x(2xy6z312x5z+32y3x3)f_{xx} = \frac{\partial}{\partial x}(f_x) = \frac{\partial}{\partial x} \left( \frac{2xy^6}{z^3} - 12x^5 z + 32y^{-3} x^3\right)

      =2y6z360x4z+96y3x2= \frac{2y^6}{z^3} - 60x^4 z + 96y^{-3} x^2

    • Mixed partial derivatives with respect to xx and yy:

      fxy=y(fx)=y(2xy6z312x5z+32y3x3)f_{xy} = \frac{\partial}{\partial y}(f_x) = \frac{\partial}{\partial y} \left(\frac{2xy^6}{z^3} - 12x^5 z + 32y^{-3} x^3\right)

      =12xy5z396y4x3= \frac{12xy^5}{z^3} - 96y^{-4} x^3

    • Mixed partial derivatives with respect to xx and zz:

      fxz=z(fx)=z(2xy6z312x5z+32y3x3)f_{xz} = \frac{\partial}{\partial z}(f_x) = \frac{\partial}{\partial z} \left(\frac{2xy^6}{z^3} - 12x^5 z + 32y^{-3} x^3 \right)

      =6xy6z412x5= -\frac{6xy^6}{z^4} - 12x^5

    • Second partial derivatives with respect to yy:

      fyy=y(fy)=y(6x2y5z324y4x4)f_{yy} = \frac{\partial}{\partial y}(f_y) = \frac{\partial}{\partial y} \left(\frac{6x^2 y^5}{z^3} - 24y^{-4} x^4\right)

      =30x2y4z3+96y5x4= \frac{30x^2 y^4}{z^3} + 96y^{-5} x^4

    • Mixed partial derivatives with respect to yy and zz:

      fyz=z(fy)=z(6x2y5z324y4x4)f_{yz} = \frac{\partial}{\partial z}(f_y) = \frac{\partial}{\partial z} \left(\frac{6x^2 y^5}{z^3} - 24y^{-4} x^4 \right)

      =18x2y5z4= -\frac{18x^2 y^5}{z^4}

    • Second partial derivatives with respect to zz:

      fzz=z(fz)=z(3x2y6z42x6+8z)f_{zz} = \frac{\partial}{\partial z}(f_z) = \frac{\partial}{\partial z} \left(-\frac{3x^2 y^6}{z^4} - 2x^6 + 8z\right)

      =12x2y6z5+8= \frac{12x^2 y^6}{z^5} + 8

These are the second-order partial derivatives of the given function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Derivatives
Second-Order Derivatives
Multivariable Calculus

Formulas

f_x = ∂f/∂x, f_y = ∂f/∂y, f_z = ∂f/∂z
f_{xx} = ∂²f/∂x², f_{xy} = ∂²f/∂x∂y, f_{xz} = ∂²f/∂x∂z
f_{yy} = ∂²f/∂y², f_{yz} = ∂²f/∂y∂z, f_{zz} = ∂²f/∂z²

Theorems

Mixed Partial Derivatives Theorem (Schwarz's Theorem)

Suitable Grade Level

Undergraduate Calculus (Year 1-2)