Math Problem Statement

Use a calculator to work out (5.36 × 10^-4)^3 + (3.13 × 10^-5) × (2.48 × 10^-6). Give your answer in standard form to 3 significant figures.

Solution

Let's break this problem into two parts and solve it step by step:

Expression:

(5.36×104)3+(3.13×105)×(2.48×106)\left( 5.36 \times 10^{-4} \right)^3 + \left( 3.13 \times 10^{-5} \right) \times \left( 2.48 \times 10^{-6} \right)

Step 1: Solve the first term (5.36×104)3\left( 5.36 \times 10^{-4} \right)^3

(5.36×104)3=5.363×(104)3(5.36 \times 10^{-4})^3 = 5.36^3 \times (10^{-4})^3 Calculate: 5.363=153.6345.36^3 = 153.634 (104)3=1012(10^{-4})^3 = 10^{-12} Thus: (5.36×104)3=153.634×1012(5.36 \times 10^{-4})^3 = 153.634 \times 10^{-12} So, the first term is: 1.53634×10101.53634 \times 10^{-10}

Step 2: Solve the second term (3.13×105)×(2.48×106)\left( 3.13 \times 10^{-5} \right) \times \left( 2.48 \times 10^{-6} \right)

Multiply the coefficients: 3.13×2.48=7.76243.13 \times 2.48 = 7.7624 Multiply the powers of 10: 105×106=101110^{-5} \times 10^{-6} = 10^{-11} Thus, the second term is: 7.7624×10117.7624 \times 10^{-11}

Step 3: Add the two terms

1.53634×1010+7.7624×10111.53634 \times 10^{-10} + 7.7624 \times 10^{-11} Factor out 101110^{-11}: =(15.3634+7.7624)×1011= (15.3634 + 7.7624) \times 10^{-11} =23.1258×1011= 23.1258 \times 10^{-11} Convert to standard form: 2.31258×10102.31258 \times 10^{-10}

Step 4: Round to 3 significant figures

2.31×1010\boxed{2.31 \times 10^{-10}}

Let me know if you'd like more details or have any questions!

Here are 5 related questions for practice:

  1. What is (4.22×103)2(4.22 \times 10^{-3})^2 in standard form to 3 significant figures?
  2. How do you multiply powers of 10 with different exponents?
  3. What

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Standard Form
Exponentiation
Scientific Notation
Multiplication of Powers of 10

Formulas

(a × 10^n)^m = a^m × 10^(n×m)
(a × 10^n) × (b × 10^m) = (a×b) × 10^(n+m)

Theorems

-

Suitable Grade Level

Grades 9-11