Math Problem Statement

The image shows a right triangle with one leg measuring 3 units and the other leg measuring 7 units. The user wants to find the hypotenuse.

Solution

The image shows a right triangle with one leg labeled as 3 units and the other as 7 units. To find the hypotenuse (the longest side of the triangle), we can apply the Pythagorean theorem, which states:

c2=a2+b2c^2 = a^2 + b^2

Where cc is the hypotenuse, and aa and bb are the legs of the triangle. In this case:

  • a=3a = 3
  • b=7b = 7

Now, let's calculate the hypotenuse.The length of the hypotenuse is approximately 7.627.62 units.

Would you like more details or have any questions about this?

Here are some related questions for further exploration:

  1. How do you apply the Pythagorean theorem in real-life scenarios?
  2. What are the properties of right triangles and their applications?
  3. Can the Pythagorean theorem be extended to three-dimensional shapes?
  4. How do trigonometric ratios (sine, cosine, and tangent) relate to right triangles?
  5. What are some other methods to calculate the hypotenuse besides the Pythagorean theorem?

Tip: Always verify that the triangle is right-angled before using the Pythagorean theorem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Right Triangles

Formulas

Pythagorean Theorem: c^2 = a^2 + b^2

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 7-9