Math Problem Statement

Let R=[0,4]×[−1,2]. Create a Riemann sum by subdividing [0,4] into m=2 intervals, and [−1,2] into n=3 subintervals, then use it to estimate the value of∬R(1−xy2)dA.Take the sample points to be the upper left corner of each rectangle.

Answer: 

Solution

To estimate the value of the double integral R(1xy2)dA\iint_R (1 - xy^2) \, dA over the region R=[0,4]×[1,2]R = [0, 4] \times [-1, 2] using a Riemann sum, we will subdivide the intervals as specified.

Step 1: Subdivision of the intervals

  1. For the interval [0,4][0, 4]:

    • Divide into m=2m = 2 intervals:
      • [0,2][0, 2] and [2,4][2, 4].
    • Width of each interval: Δx=402=2.\Delta x = \frac{4 - 0}{2} = 2.
  2. For the interval [1,2][-1, 2]:

    • Divide into n=3n = 3 intervals:
      • [1,0][-1, 0], [0,1][0, 1], and [1,2][1, 2].
    • Width of each interval: Δy=2(1)3=1.\Delta y = \frac{2 - (-1)}{3} = 1.

Step 2: Sample points

We will use the upper-left corner of each rectangle as the sample point:

  • For the first interval in xx and yy:

    • (0,1)(0, -1)
  • For the second interval in xx (first yy interval):

    • (0,0)(0, 0)
  • For the third interval in xx (first yy interval):

    • (0,1)(0, 1)
  • For the first interval in xx (second yy interval):

    • (2,1)(2, -1)
  • For the second interval in xx (second yy interval):

    • (2,0)(2, 0)
  • For the third interval in xx (second yy interval):

    • (2,1)(2, 1)
  • For the first interval in xx (third yy interval):

    • (4,1)(4, -1)
  • For the second interval in xx (third yy interval):

    • (4,0)(4, 0)
  • For the third interval in xx (third yy interval):

    • (4,1)(4, 1)

Step 3: Riemann sum calculation

The area of each rectangle is given by: ΔA=ΔxΔy=21=2.\Delta A = \Delta x \cdot \Delta y = 2 \cdot 1 = 2.

Now, we compute the value of the function f(x,y)=1xy2f(x, y) = 1 - xy^2 at each sample point and multiply by the area of each rectangle:

  1. f(0,1)=10(1)2=1f(0, -1) = 1 - 0 \cdot (-1)^2 = 1

  2. f(0,0)=1002=1f(0, 0) = 1 - 0 \cdot 0^2 = 1

  3. f(0,1)=1012=1f(0, 1) = 1 - 0 \cdot 1^2 = 1

  4. f(2,1)=12(1)2=12=1f(2, -1) = 1 - 2 \cdot (-1)^2 = 1 - 2 = -1

  5. f(2,0)=1202=1f(2, 0) = 1 - 2 \cdot 0^2 = 1

  6. f(2,1)=1212=12=1f(2, 1) = 1 - 2 \cdot 1^2 = 1 - 2 = -1

  7. f(4,1)=14(1)2=14=3f(4, -1) = 1 - 4 \cdot (-1)^2 = 1 - 4 = -3

  8. f(4,0)=1402=1f(4, 0) = 1 - 4 \cdot 0^2 = 1

  9. f(4,1)=1412=14=3f(4, 1) = 1 - 4 \cdot 1^2 = 1 - 4 = -3

Total Riemann sum:

Now, we sum the contributions from each rectangle:

Riemann sum=2(f(0,1)+f(0,0)+f(0,1)+f(2,1)+f(2,0)+f(2,1)+f(4,1)+f(4,0)+f(4,1))\text{Riemann sum} = 2 \left( f(0, -1) + f(0, 0) + f(0, 1) + f(2, -1) + f(2, 0) + f(2, 1) + f(4, -1) + f(4, 0) + f(4, 1) \right)

Substituting the values:

=2(1+1+11+113+13)= 2 \left( 1 + 1 + 1 - 1 + 1 - 1 - 3 + 1 - 3 \right) =2(1+1+11+113+13)= 2 \left( 1 + 1 + 1 - 1 + 1 - 1 - 3 + 1 - 3 \right) =2(4)=8.= 2 \left( -4 \right) = -8.

Final Answer:

Thus, the estimated value of the double integral using the Riemann sum is: 8.\boxed{-8}.

Do you have any questions or want further details? Here are some related questions you might consider:

  1. How would the Riemann sum change if we used the lower right corner as the sample point?
  2. What is the effect of increasing the number of subdivisions on the accuracy of the estimate?
  3. Can you explain how to interpret the result of the double integral geometrically?
  4. What other methods could be used to evaluate the double integral?
  5. How would you compute the double integral exactly using analytical methods?

Tip: Increasing the number of intervals can lead to a more accurate estimate of the integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Riemann Sums
Calculus

Formulas

Riemann Sum = Σ f(x_i, y_j) * ΔA

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12