Math Problem Statement
Solution
The problem you're dealing with is a relative velocity problem. Here's the key information from the image:
- One car is traveling at 60 km/h (the slower car).
- The other car is traveling at 80 km/h (the faster car).
- The slower car is 110 km ahead of the faster car.
- The question asks: If it is now 3:30 PM, and the cars continue to travel at the same rates, when will the faster car catch up to the slower car?
Steps to solve:
-
Relative velocity:
- The relative velocity of the faster car compared to the slower car is:
-
Time to catch up:
- The faster car needs to cover a distance of 110 km at the relative speed of 20 km/h.
- Using the formula for time:
-
Final time:
- If it is currently 3:30 PM, then adding 5 hours will give the time the faster car catches up.
- 3:30 PM + 5 hours = 8:30 PM.
Answer:
The faster car will catch up to the slower car at 8:30 PM.
Would you like further details or clarifications?
Here are five related questions:
- How would the solution change if both cars increased their speed equally?
- What if the slower car was initially 150 km ahead?
- How would the answer change if the faster car could accelerate over time?
- Can you express this problem as a system of equations?
- How can you use a graph to visually show the moment they meet?
Tip: Relative velocity is crucial when analyzing the movement of two objects in the same direction or opposing directions.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Relative Velocity
Distance, Speed, and Time Calculation
Formulas
Relative Velocity = Speed of Faster Car - Speed of Slower Car
Time = Distance / Relative Speed
Theorems
None
Suitable Grade Level
Grades 6-8
Related Recommendation
Catch-Up Problem: Car A vs. Car B from Melbourne to Adelaide
How Long for the Second Train to Catch Up? Relative Speed Problem
Relative Speed Problem: Time for Margaret to be 30 Miles Ahead of Victoria
Solving Relative Motion Problems: Car Overtakes Truck on Highway
Solve Time-Distance Problem: Car Passing a Truck on Highway