Math Problem Statement

rationalize √2 + √5 - 1 / 6 -2√10

Solution

To rationalize the expression 2+516210\frac{\sqrt{2} + \sqrt{5} - 1}{6 - 2\sqrt{10}}, follow these steps:

  1. Identify the denominator and the appropriate form for rationalization. The denominator is 62106 - 2\sqrt{10}, which suggests using its conjugate 6+2106 + 2\sqrt{10}.

  2. Multiply numerator and denominator by the conjugate of the denominator: 2+5162106+2106+210\frac{\sqrt{2} + \sqrt{5} - 1}{6 - 2\sqrt{10}} \cdot \frac{6 + 2\sqrt{10}}{6 + 2\sqrt{10}}

  3. Expand the numerator and denominator: Numerator: (2+51)(6+210)\text{Numerator: } (\sqrt{2} + \sqrt{5} - 1)(6 + 2\sqrt{10}) Denominator: (6210)(6+210)\text{Denominator: } (6 - 2\sqrt{10})(6 + 2\sqrt{10})

  4. Simplify the denominator using the difference of squares: (6210)(6+210)=62(210)2=36410=3640=4(6 - 2\sqrt{10})(6 + 2\sqrt{10}) = 6^2 - (2\sqrt{10})^2 = 36 - 4 \cdot 10 = 36 - 40 = -4

  5. Expand and simplify the numerator: (2+51)(6+210)=26+2210+56+5210161210(\sqrt{2} + \sqrt{5} - 1)(6 + 2\sqrt{10}) = \sqrt{2} \cdot 6 + \sqrt{2} \cdot 2\sqrt{10} + \sqrt{5} \cdot 6 + \sqrt{5} \cdot 2\sqrt{10} - 1 \cdot 6 - 1 \cdot 2\sqrt{10} =62+220+65+2506210= 6\sqrt{2} + 2\sqrt{20} + 6\sqrt{5} + 2\sqrt{50} - 6 - 2\sqrt{10} =62+45+65+1056210= 6\sqrt{2} + 4\sqrt{5} + 6\sqrt{5} + 10\sqrt{5} - 6 - 2\sqrt{10} =62+2056210= 6\sqrt{2} + 20\sqrt{5} - 6 - 2\sqrt{10}

  6. Combine and simplify the entire expression: 62+20562104=6242054+64+2104\frac{6\sqrt{2} + 20\sqrt{5} - 6 - 2\sqrt{10}}{-4} = -\frac{6\sqrt{2}}{4} - \frac{20\sqrt{5}}{4} + \frac{6}{4} + \frac{2\sqrt{10}}{4} =32255+32+102= -\frac{3\sqrt{2}}{2} - 5\sqrt{5} + \frac{3}{2} + \frac{\sqrt{10}}{2}

The rationalized form of the given expression is: 32255+32+102-\frac{3\sqrt{2}}{2} - 5\sqrt{5} + \frac{3}{2} + \frac{\sqrt{10}}{2}

Do you want further details or have any questions?

Here are 5 related questions:

  1. How do you rationalize the denominator of 73+2\frac{7}{\sqrt{3} + 2}?
  2. What is the process to simplify 5+6231\frac{5 + \sqrt{6}}{2\sqrt{3} - 1}?
  3. How do you rationalize and simplify 1a+b\frac{1}{\sqrt{a} + \sqrt{b}}?
  4. What is the result of rationalizing the denominator of 4+352\frac{4 + \sqrt{3}}{5 - \sqrt{2}}?
  5. Can you explain the significance of using conjugates in rationalizing denominators?

Tip: When rationalizing a denominator involving a binomial with a square root, always use the conjugate of the binomial to eliminate the square root.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rationalization
Radicals
Algebra

Formulas

Difference of squares: (a - b)(a + b) = a^2 - b^2
Conjugate multiplication

Theorems

Difference of squares theorem
Simplification of radicals

Suitable Grade Level

Grades 9-12