Math Problem Statement

The temperature at a point (x, y, z) is given by T(x, y, z) = 1000e^(-x^2 - 2y^2 - z^2). Find the rate of change of temperature at P(2, -1, 2) toward Q(3, -3, 3), the direction of fastest temperature increase at P, and the maximum rate of increase at P.

Solution

To solve these questions, we first need to calculate the gradient of T(x,y,z)T(x, y, z), which gives us both the direction and rate of the steepest increase in temperature.

Given:

T(x,y,z)=1000ex22y2z2T(x, y, z) = 1000 e^{-x^2 - 2y^2 - z^2} where TT is measured in °C and x,y,zx, y, z are in meters.

Step 1: Calculate the Gradient T\nabla T

The gradient of TT is: T=(Tx,Ty,Tz)\nabla T = \left( \frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z} \right)

  1. Partial derivative with respect to xx: Tx=1000ex22y2z2(2x)=2000xex22y2z2\frac{\partial T}{\partial x} = 1000 \cdot e^{-x^2 - 2y^2 - z^2} \cdot (-2x) = -2000x \cdot e^{-x^2 - 2y^2 - z^2}

  2. Partial derivative with respect to yy: Ty=1000ex22y2z2(4y)=4000yex22y2z2\frac{\partial T}{\partial y} = 1000 \cdot e^{-x^2 - 2y^2 - z^2} \cdot (-4y) = -4000y \cdot e^{-x^2 - 2y^2 - z^2}

  3. Partial derivative with respect to zz: Tz=1000ex22y2z2(2z)=2000zex22y2z2\frac{\partial T}{\partial z} = 1000 \cdot e^{-x^2 - 2y^2 - z^2} \cdot (-2z) = -2000z \cdot e^{-x^2 - 2y^2 - z^2}

Thus, T=(2000xex22y2z2,4000yex22y2z2,2000zex22y2z2)\nabla T = \left( -2000x \cdot e^{-x^2 - 2y^2 - z^2}, -4000y \cdot e^{-x^2 - 2y^2 - z^2}, -2000z \cdot e^{-x^2 - 2y^2 - z^2} \right)

Question 1: Rate of Change of Temperature at P(2,1,2)P(2, -1, 2) Toward Q(3,3,3)Q(3, -3, 3)

  1. Calculate T\nabla T at P(2,1,2)P(2, -1, 2): Tx(2,1,2)=20002e222(1)222=4000e12T_x(2, -1, 2) = -2000 \cdot 2 \cdot e^{-2^2 - 2(-1)^2 - 2^2} = -4000 \cdot e^{-12} Ty(2,1,2)=4000(1)e12=4000e12T_y(2, -1, 2) = -4000 \cdot (-1) \cdot e^{-12} = 4000 \cdot e^{-12} Tz(2,1,2)=20002e12=4000e12T_z(2, -1, 2) = -2000 \cdot 2 \cdot e^{-12} = -4000 \cdot e^{-12}

    Therefore, T(2,1,2)=(4000e12,4000e12,4000e12)\nabla T(2, -1, 2) = (-4000 e^{-12}, 4000 e^{-12}, -4000 e^{-12})

  2. Find the direction vector PQ\vec{PQ}: PQ=(32,3+1,32)=(1,2,1)\vec{PQ} = (3 - 2, -3 + 1, 3 - 2) = (1, -2, 1)

  3. Unit vector in the direction of PQ\vec{PQ}: PQ=12+(2)2+12=6|\vec{PQ}| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6} u^PQ=(16,26,16)\hat{u}_{PQ} = \left( \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right)

  4. Directional derivative DPQTD_{\vec{PQ}} T: DPQT=Tu^PQ=(4000e12,4000e12,4000e12)(16,26,16)D_{\vec{PQ}} T = \nabla T \cdot \hat{u}_{PQ} = (-4000 e^{-12}, 4000 e^{-12}, -4000 e^{-12}) \cdot \left( \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right) =4000e126+8000e1264000e126=16000e126= \frac{-4000 e^{-12}}{\sqrt{6}} + \frac{-8000 e^{-12}}{\sqrt{6}} - \frac{4000 e^{-12}}{\sqrt{6}} = -\frac{16000 e^{-12}}{\sqrt{6}}

Question 2: Direction of Maximum Temperature Increase at PP

The direction of the maximum temperature increase at PP is given by the direction of T\nabla T at PP: (4000e12,4000e12,4000e12)(-4000 e^{-12}, 4000 e^{-12}, -4000 e^{-12})

Question 3: Maximum Rate of Increase at PP

The maximum rate of increase is the magnitude of T\nabla T at PP: T=(4000e12)2+(4000e12)2+(4000e12)2=4000e123|\nabla T| = \sqrt{(-4000 e^{-12})^2 + (4000 e^{-12})^2 + (-4000 e^{-12})^2} = 4000 e^{-12} \sqrt{3}

Would you like further details on each step?


Relative Questions:

  1. How do you find the gradient vector of a multivariable function?
  2. What is the significance of the directional derivative in physical applications?
  3. How does the unit vector influence the directional derivative calculation?
  4. Why is the maximum rate of increase always in the gradient direction?
  5. How does one interpret the magnitude of the gradient in real-world terms?

Tip: The gradient vector points in the direction of the steepest ascent for a scalar field, providing both the direction and rate of change in that direction.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Gradient
Directional Derivative

Formulas

T(x, y, z) = 1000e^(-x^2 - 2y^2 - z^2)
Gradient: ∇T = (∂T/∂x, ∂T/∂y, ∂T/∂z)
Directional Derivative: D_u T = ∇T • u
Magnitude of Gradient: |∇T|

Theorems

Gradient Vector Points in the Direction of Steepest Ascent
Directional Derivative

Suitable Grade Level

College-Level Calculus