Let's solve the given exercise step by step.
We are given:
C=−3×(4−5x)+(4−5x)×(−3−4x)
1) Développer et réduire C (Expand and simplify C):
We will first expand the terms and then simplify.
C=−3(4−5x)+(4−5x)(−3−4x)
Expanding:
-
First term: −3(4−5x):
−3(4−5x)=−12+15x
-
Second term: (4−5x)(−3−4x) (distribute both terms):
(4−5x)(−3−4x)=4(−3)+4(−4x)+(−5x)(−3)+(−5x)(−4x)
=−12−16x+15x+20x2
Now, combine the expanded terms:
C=(−12+15x)+(−12−16x+15x+20x2)
C=−12+15x−12−16x+15x+20x2
Simplify:
C=20x2+(15x−16x+15x)−12−12
C=20x2+14x−24
So, the simplified form of C is:
C=20x2+14x−24
2) Factoriser C (Factor C):
We have the quadratic expression:
C=20x2+14x−24
To factor this, we can first factor out the greatest common factor (GCF) of the coefficients, which is 2:
C=2(10x2+7x−12)
Now, we will factor the quadratic 10x2+7x−12 using the splitting middle term method.
We need to find two numbers that multiply to 10×(−12)=−120 and add to 7. The numbers are 15 and -8, since:
15×(−8)=−120and15+(−8)=7
We split the middle term:
10x2+15x−8x−12
Group the terms:
(10x2+15x)−(8x+12)
Factor each group:
5x(2x+3)−4(2x+3)
Now, factor out the common binomial factor (2x+3):
(2x+3)(5x−4)
Thus, the fully factored form of C is:
C=2(2x+3)(5x−4)
3) Calculer C pour x=−2 et x=32:
a) When x=−2:
Substitute x=−2 into the factored form:
C=2(2(−2)+3)(5(−2)−4)
=2((−4)+3)(−10−4)
=2(−1)(−14)=2(14)=28
So, C=28 when x=−2.
b) When x=32:
Substitute x=32 into the factored form:
C=2(2(32)+3)(5(32)−4)
=2(34+3)(310−4)
=2(34+39)(310−312)
=2(313)(3−2)
=2×9−26=9−52
So, C=9−52 when x=32.
Would you like further details on any of these steps, or do you have questions? Here are some related problems:
- Expand and factor: C=3(2x+5)−4(3x−2).
- Solve 2x2+5x−12=0 using the quadratic formula.
- Calculate C=5x2−7x+3 for x=1.
- Factor 15x2−14x+3.
- Expand (2x+3)(4x−5).
Tip: Always check for a greatest common factor (GCF) before factoring quadratic equations!