Math Problem Statement

C = -3 * (4 - 5x) + (4 - 5x) * (-3 - 4x) 1) Développer et réduire C. 2) Factoriser C. 3) Calculer C pour : a) x = -2 b) x = 2/3

Solution

Let's solve the given exercise step by step.

We are given:

C=3×(45x)+(45x)×(34x)C = -3 \times (4 - 5x) + (4 - 5x) \times (-3 - 4x)

1) Développer et réduire C (Expand and simplify CC):

We will first expand the terms and then simplify.

C=3(45x)+(45x)(34x)C = -3(4 - 5x) + (4 - 5x)(-3 - 4x)

Expanding:

  • First term: 3(45x)-3(4 - 5x): 3(45x)=12+15x-3(4 - 5x) = -12 + 15x

  • Second term: (45x)(34x)(4 - 5x)(-3 - 4x) (distribute both terms): (45x)(34x)=4(3)+4(4x)+(5x)(3)+(5x)(4x)(4 - 5x)(-3 - 4x) = 4(-3) + 4(-4x) + (-5x)(-3) + (-5x)(-4x) =1216x+15x+20x2= -12 - 16x + 15x + 20x^2

Now, combine the expanded terms: C=(12+15x)+(1216x+15x+20x2)C = (-12 + 15x) + (-12 - 16x + 15x + 20x^2) C=12+15x1216x+15x+20x2C = -12 + 15x - 12 - 16x + 15x + 20x^2

Simplify: C=20x2+(15x16x+15x)1212C = 20x^2 + (15x - 16x + 15x) - 12 - 12 C=20x2+14x24C = 20x^2 + 14x - 24

So, the simplified form of CC is: C=20x2+14x24C = 20x^2 + 14x - 24

2) Factoriser CC (Factor CC):

We have the quadratic expression: C=20x2+14x24C = 20x^2 + 14x - 24

To factor this, we can first factor out the greatest common factor (GCF) of the coefficients, which is 2: C=2(10x2+7x12)C = 2(10x^2 + 7x - 12)

Now, we will factor the quadratic 10x2+7x1210x^2 + 7x - 12 using the splitting middle term method.

We need to find two numbers that multiply to 10×(12)=12010 \times (-12) = -120 and add to 7. The numbers are 15 and -8, since: 15×(8)=120and15+(8)=715 \times (-8) = -120 \quad \text{and} \quad 15 + (-8) = 7

We split the middle term: 10x2+15x8x1210x^2 + 15x - 8x - 12

Group the terms: (10x2+15x)(8x+12)(10x^2 + 15x) - (8x + 12)

Factor each group: 5x(2x+3)4(2x+3)5x(2x + 3) - 4(2x + 3)

Now, factor out the common binomial factor (2x+3)(2x + 3): (2x+3)(5x4)(2x + 3)(5x - 4)

Thus, the fully factored form of CC is: C=2(2x+3)(5x4)C = 2(2x + 3)(5x - 4)

3) Calculer CC pour x=2x = -2 et x=23x = \frac{2}{3}:

a) When x=2x = -2:

Substitute x=2x = -2 into the factored form: C=2(2(2)+3)(5(2)4)C = 2(2(-2) + 3)(5(-2) - 4) =2((4)+3)(104)= 2((-4) + 3)(-10 - 4) =2(1)(14)=2(14)=28= 2(-1)(-14) = 2(14) = 28

So, C=28C = 28 when x=2x = -2.

b) When x=23x = \frac{2}{3}:

Substitute x=23x = \frac{2}{3} into the factored form: C=2(2(23)+3)(5(23)4)C = 2\left(2\left(\frac{2}{3}\right) + 3\right)\left(5\left(\frac{2}{3}\right) - 4\right) =2(43+3)(1034)= 2\left(\frac{4}{3} + 3\right)\left(\frac{10}{3} - 4\right) =2(43+93)(103123)= 2\left(\frac{4}{3} + \frac{9}{3}\right)\left(\frac{10}{3} - \frac{12}{3}\right) =2(133)(23)= 2\left(\frac{13}{3}\right)\left(\frac{-2}{3}\right) =2×269=529= 2 \times \frac{-26}{9} = \frac{-52}{9}

So, C=529C = \frac{-52}{9} when x=23x = \frac{2}{3}.


Would you like further details on any of these steps, or do you have questions? Here are some related problems:

  1. Expand and factor: C=3(2x+5)4(3x2)C = 3(2x + 5) - 4(3x - 2).
  2. Solve 2x2+5x12=02x^2 + 5x - 12 = 0 using the quadratic formula.
  3. Calculate C=5x27x+3C = 5x^2 - 7x + 3 for x=1x = 1.
  4. Factor 15x214x+315x^2 - 14x + 3.
  5. Expand (2x+3)(4x5)(2x + 3)(4x - 5).

Tip: Always check for a greatest common factor (GCF) before factoring quadratic equations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Factoring
Substitution

Formulas

Expansion of products: (a + b)(c + d) = ac + ad + bc + bd
Factoring quadratics
Substitution into expressions

Theorems

Distributive Property
Factoring Method
Simplifying Quadratic Expressions

Suitable Grade Level

Grades 9-11