Math Problem Statement

solve q 2

Prove that the limit \( \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x \) exists.

Solution

To prove that

limx(1+1x)x\lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x

exists and equals ee, we can proceed as follows:

Solution:

  1. Consider the expression: y=(1+1x)xy = \left( 1 + \frac{1}{x} \right)^x

  2. Take the natural logarithm on both sides: ln(y)=xln(1+1x)\ln(y) = x \cdot \ln\left(1 + \frac{1}{x}\right)

  3. Analyze the limit of ln(y)\ln(y) as xx \to \infty: We want to find: limxln(y)=limxxln(1+1x)\lim_{x \to \infty} \ln(y) = \lim_{x \to \infty} x \cdot \ln\left(1 + \frac{1}{x}\right)

  4. Apply Taylor expansion (approximation) for ln(1+u)\ln(1 + u) around u=0u = 0: Since 1x0\frac{1}{x} \to 0 as xx \to \infty, we can use the approximation ln(1+u)u\ln(1 + u) \approx u when uu is small. Therefore: ln(1+1x)1x\ln\left(1 + \frac{1}{x}\right) \approx \frac{1}{x}

  5. Substitute this approximation into the limit: limxxln(1+1x)limxx1x=limx1=1\lim_{x \to \infty} x \cdot \ln\left(1 + \frac{1}{x}\right) \approx \lim_{x \to \infty} x \cdot \frac{1}{x} = \lim_{x \to \infty} 1 = 1

  6. Interpret this result in terms of yy: Since limxln(y)=1\lim_{x \to \infty} \ln(y) = 1, we have: limxy=e\lim_{x \to \infty} y = e

Conclusion:

limx(1+1x)x=e\lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e

This completes the proof that this limit exists and equals ee.

Would you like more details on this proof or have any specific questions?


Additional Practice Problems

  1. Use a similar approach to prove that limx(11x)x=1e\lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x = \frac{1}{e}.
  2. Explain why the approximation ln(1+u)u\ln(1 + u) \approx u is valid when uu is close to zero.
  3. Prove that limx(1+kx)x=ek\lim_{x \to \infty} \left(1 + \frac{k}{x}\right)^x = e^k for any constant kk.
  4. Find the limit limx(1+2x)x\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x.
  5. Investigate the behavior of (1+1n)n\left(1 + \frac{1}{n}\right)^n as nn approaches infinity numerically.

Tip

When using Taylor approximations, remember that they are most accurate when the input variable approaches the value where the expansion is centered.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
Exponential Functions

Formulas

\( \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e \)
Natural Logarithm: \( \ln(y) = x \cdot \ln\left(1 + \frac{1}{x}\right) \)
Taylor Expansion: \( \ln(1 + u) \approx u \) when \( u \) is small

Theorems

Limit Definition of e
Taylor Series Expansion

Suitable Grade Level

Grades 11-12