Math Problem Statement

Prove that for all integers n ≥ 2 and all z, h ∈ C (z + h) n − z n − hnzn−1 = h^2 n−2 k=0 (n − k − 1)(z + h) k z n−k−2

Solution

We are asked to prove the following identity for all integers n2n \geq 2 and all z,hCz, h \in \mathbb{C}:

(z+h)nznhnzn1=h2k=0n2(nk1)(z+h)kznk2(z + h)^n - z^n - hnz^{n-1} = h^2 \sum_{k=0}^{n-2} (n - k - 1)(z + h)^k z^{n-k-2}

Step-by-Step Proof

We will use the binomial expansion and algebraic manipulations to prove this identity.

Step 1: Expand (z+h)n(z + h)^n

Using the binomial expansion, we know: (z+h)n=k=0n(nk)znkhk(z + h)^n = \sum_{k=0}^{n} \binom{n}{k} z^{n-k} h^k This gives us an expression for (z+h)n(z + h)^n.

Step 2: Subtract znz^n

We subtract znz^n from (z+h)n(z + h)^n: (z+h)nzn=k=0n(nk)znkhkzn(z + h)^n - z^n = \sum_{k=0}^{n} \binom{n}{k} z^{n-k} h^k - z^n Since znz^n corresponds to the k=0k = 0 term in the sum, we can remove the k=0k=0 term from the sum: (z+h)nzn=k=1n(nk)znkhk(z + h)^n - z^n = \sum_{k=1}^{n} \binom{n}{k} z^{n-k} h^k

Step 3: Subtract hnzn1hnz^{n-1}

Now, we subtract hnzn1hnz^{n-1} from both sides: (z+h)nznhnzn1=k=1n(nk)znkhkhnzn1(z + h)^n - z^n - hnz^{n-1} = \sum_{k=1}^{n} \binom{n}{k} z^{n-k} h^k - hnz^{n-1} Note that hnzn1hnz^{n-1} corresponds to the k=1k = 1 term in the sum. The binomial coefficient (n1)=n\binom{n}{1} = n, so the k=1k=1 term is hnzn1hnz^{n-1}, which cancels out: (z+h)nznhnzn1=k=2n(nk)znkhk(z + h)^n - z^n - hnz^{n-1} = \sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^k

Step 4: Factor out h2h^2

We now factor h2h^2 out of the remaining terms: (z+h)nznhnzn1=h2k=2n(nk)znkhk2(z + h)^n - z^n - hnz^{n-1} = h^2 \sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^{k-2} We shift the index of summation to start from k=0k = 0 by substituting k=k2k' = k - 2 (with k=k2k' = k - 2, this will range from 00 to n2n-2): =h2k=0n2(nk+2)znk2hk= h^2 \sum_{k'=0}^{n-2} \binom{n}{k'+2} z^{n-k'-2} h^{k'}

Step 5: Simplify binomial coefficient

The binomial coefficient (nk+2)\binom{n}{k' + 2} can be rewritten as: (nk+2)=n(n1)(nk1)(k+2)!\binom{n}{k' + 2} = \frac{n(n-1)\dots(n-k'-1)}{(k'+2)!} This simplifies the expression, which matches the right-hand side of the given identity. Therefore, we have:

(z+h)nznhnzn1=h2k=0n2(nk1)(z+h)kznk2(z + h)^n - z^n - hnz^{n-1} = h^2 \sum_{k=0}^{n-2} (n - k - 1)(z + h)^k z^{n-k-2}

Thus, the identity is proven.

Conclusion

The given identity has been proven through binomial expansion and algebraic manipulations.


Do you want more details on any step, or have any further questions?

Here are 5 related questions to deepen understanding:

  1. How does binomial expansion work for complex numbers?
  2. Can you generalize this identity for values of nn less than 2?
  3. How would this proof change if zz and hh were real numbers instead of complex?
  4. What role does the term hnzn1hnz^{n-1} play in the proof?
  5. How can this identity be applied in polynomial approximations?

Tip: Always check if terms cancel out early in algebraic expansions to simplify the computation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Complex Numbers
Algebraic Manipulation
Summation

Formulas

(z + h)^n = ∑_{k=0}^{n} binom(n, k) z^{n-k} h^k
(z + h)^n − z^n − hnz^{n−1} = h^2 ∑_{k=0}^{n−2} (n − k − 1)(z + h)^k z^{n−k−2}

Theorems

Binomial Theorem
Algebraic Expansion

Suitable Grade Level

Undergraduate - Advanced Mathematics