Math Problem Statement
Prove that for all integers n ≥ 2 and all z, h ∈ C (z + h) n − z n − hnzn−1 = h^2 n−2 k=0 (n − k − 1)(z + h) k z n−k−2
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Binomial Expansion
Complex Numbers
Algebraic Manipulation
Summation
Formulas
(z + h)^n = ∑_{k=0}^{n} binom(n, k) z^{n-k} h^k
(z + h)^n − z^n − hnz^{n−1} = h^2 ∑_{k=0}^{n−2} (n − k − 1)(z + h)^k z^{n−k−2}
Theorems
Binomial Theorem
Algebraic Expansion
Suitable Grade Level
Undergraduate - Advanced Mathematics
Related Recommendation
Proof of Double Sum Identity Involving Binomial Coefficients
Binomial Theorem Proof of 2^n = ∑_{k=0}^{n} (-1)^k (n choose k) 3^{n-k}
Proof Using Binomial Theorem: Sum with Coefficient (-2)^k Equals (-1)^n
Summation of k * binomial(n,k)^2 - Combinatorial Closed Form
Demonstration of Summation Equality Using Mathematical Induction