Math Problem Statement
Prove the identity cos 4θ + 4cos2θ ≡ 8cos4 θ − 3.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Trigonometric Identities
Double Angle Formula
Formulas
cos 2θ = 2cos²θ - 1
cos 4θ = 2cos²(2θ) - 1
(2cos²θ - 1)² = 4cos⁴θ - 4cos²θ + 1
Theorems
Double Angle Theorem
Multiple Angle Identities
Suitable Grade Level
Grades 10-12
Related Recommendation
Prove the Identity: cos(4θ) + 4cos(2θ) ≡ 8cos^4(θ) - 3
Proof of cos(4θ) using Trigonometric Identities
Proof of Trigonometric Identity: 4sin^4(θ) = 1 - 2cos(2θ) + cos^2(2θ)
Proving 2(1 + cos(8θ)) = (x^4 - 4x^2 + 2)^2 Using Trigonometry
Verify Trigonometric Identity: cos(3θ) + cos(5θ) + cos(7θ) + cos(9θ) = 4 cos(θ) cos(2θ) cos(6θ)