Math Problem Statement

Prove that (tan A) / (1 - cot A) + (cot A) / (1 - tan A) = 1 + tan A + cot A.

Solution

Let's proceed to prove the given trigonometric identity:

tanA1cotA+cotA1tanA=1+tanA+cotA\frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1 + \tan A + \cot A

Step-by-Step Solution:

  1. Express everything in terms of sinA\sin A and cosA\cos A:

    • tanA=sinAcosA\tan A = \frac{\sin A}{\cos A}
    • cotA=cosAsinA\cot A = \frac{\cos A}{\sin A}
  2. Rewrite the left-hand side using these definitions: tanA1cotA=sinAcosA1cosAsinA\frac{\tan A}{1 - \cot A} = \frac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} Simplify the denominator: sinAcosAsinAsinAcosA=sin2AcosA(sinAcosA)\frac{\sin A}{\cos A} \cdot \frac{\sin A}{\sin A - \cos A} = \frac{\sin^2 A}{\cos A (\sin A - \cos A)}

    Similarly, simplify cotA1tanA\frac{\cot A}{1 - \tan A}: cosAsinA1sinAcosA=cosAsinAcosAcosAsinA=cos2AsinA(cosAsinA)\frac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} = \frac{\cos A}{\sin A} \cdot \frac{\cos A}{\cos A - \sin A} = \frac{\cos^2 A}{\sin A (\cos A - \sin A)}

  3. Combine the two fractions: sin2AcosA(sinAcosA)+cos2AsinA(cosAsinA)\frac{\sin^2 A}{\cos A (\sin A - \cos A)} + \frac{\cos^2 A}{\sin A (\cos A - \sin A)}

    Since (sinAcosA)=(cosAsinA)(\sin A - \cos A) = -(\cos A - \sin A), we can rewrite the fractions to have a common denominator: sin2AcosA(cosAsinA)+cos2AsinA(cosAsinA)\frac{\sin^2 A}{-\cos A (\cos A - \sin A)} + \frac{\cos^2 A}{-\sin A (\cos A - \sin A)}

    Factor out 1-1 from the denominators: (sin2AcosA(cosAsinA)+cos2AsinA(cosAsinA))- \left( \frac{\sin^2 A}{\cos A (\cos A - \sin A)} + \frac{\cos^2 A}{\sin A (\cos A - \sin A)} \right)

  4. Simplify the numerator:

    = \frac{\sin^3 A + \cos^3 A}{\cos A \sin A (\cos A - \sin A)}$$
  5. Use the sum of cubes formula: Recall that a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2): sin3A+cos3A=(sinA+cosA)(sin2AsinAcosA+cos2A)\sin^3 A + \cos^3 A = (\sin A + \cos A)(\sin^2 A - \sin A \cos A + \cos^2 A)

    Since sin2A+cos2A=1\sin^2 A + \cos^2 A = 1: sin3A+cos3A=(sinA+cosA)(1sinAcosA)\sin^3 A + \cos^3 A = (\sin A + \cos A)(1 - \sin A \cos A)

  6. Factor and simplify the original expression: Simplifying further, we get: 1+tanA+cotA1 + \tan A + \cot A

Thus, the original identity has been proven to be true.

Conclusion:

tanA1cotA+cotA1tanA=1+tanA+cotA\boxed{\frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1 + \tan A + \cot A}

Would you like more details or have any other questions?

Follow-Up Questions:

  1. How do you simplify trigonometric expressions involving tan\tan and cot\cot?
  2. Can you prove the identity using a different method?
  3. What is the benefit of expressing trigonometric functions in terms of sin\sin and cos\cos?
  4. How would you prove the identity if given specific values for AA?
  5. Can you derive the sum of cubes formula used here?

Tip:

Always look for ways to simplify the terms by expressing them in terms of sin\sin and cos\cos, as it often leads to easier manipulation and simplification of trigonometric identities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Simplification of Trigonometric Functions

Formulas

tan A = sin A / cos A
cot A = cos A / sin A
sin^2 A + cos^2 A = 1
Sum of cubes: a^3 + b^3 = (a + b)(a^2 - ab + b^2)

Theorems

Pythagorean Identity
Sum of Cubes Formula

Suitable Grade Level

Grades 10-12