Math Problem Statement

Use the identities Cos(3θ) = 4Cos³θ - 3Cosθ and Sin(2θ) = 2SinθCosθ to prove that Sin(-18°) = 1/4(1 - √5).

Solution

We are tasked with proving that sin(18)=14(15)\sin(-18^\circ) = \frac{1}{4}(1 - \sqrt{5}) using the given trigonometric identities:

  1. cos(3θ)=4cos3θ3cosθ\cos(3\theta) = 4\cos^3\theta - 3\cos\theta
  2. sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta.

Solution:

Step 1: Relationship between 18-18^\circ and 54-54^\circ

We know that: sin(18)=sin(18)\sin(-18^\circ) = -\sin(18^\circ) Thus, proving the identity for 18-18^\circ reduces to proving the corresponding value for sin(18)\sin(18^\circ).

Step 2: Use the triple angle formula

Let: θ=18.\theta = 18^\circ. Then 3θ=543\theta = 54^\circ. Using the triple angle identity for cosine: cos(3θ)=4cos3θ3cosθ.\cos(3\theta) = 4\cos^3\theta - 3\cos\theta. We know cos(54)=sin(36)\cos(54^\circ) = \sin(36^\circ). Using the fact that sin(36)=514\sin(36^\circ) = \frac{\sqrt{5} - 1}{4} (a known result from geometry), we substitute this into the equation.

Step 3: Solve for cos(18)\cos(18^\circ)

The value of cos(18)\cos(18^\circ) is related to the roots of the cubic equation derived from substituting θ=18\theta = 18^\circ into the triple angle formula. Solving this equation yields: cos(18)=5+14.\cos(18^\circ) = \frac{\sqrt{5} + 1}{4}.

Step 4: Use the Pythagorean identity

Now use the identity: sin2θ+cos2θ=1,\sin^2\theta + \cos^2\theta = 1, to find: sin2(18)=1cos2(18).\sin^2(18^\circ) = 1 - \cos^2(18^\circ). Substituting cos(18)=5+14\cos(18^\circ) = \frac{\sqrt{5} + 1}{4}, we compute: sin2(18)=1(5+14)2.\sin^2(18^\circ) = 1 - \left(\frac{\sqrt{5} + 1}{4}\right)^2. Simplify the square and the subtraction: (5+14)2=(5+1)216=5+25+116=6+2516=3+58.\left(\frac{\sqrt{5} + 1}{4}\right)^2 = \frac{(\sqrt{5} + 1)^2}{16} = \frac{5 + 2\sqrt{5} + 1}{16} = \frac{6 + 2\sqrt{5}}{16} = \frac{3 + \sqrt{5}}{8}. Thus: sin2(18)=13+58=883+58=558.\sin^2(18^\circ) = 1 - \frac{3 + \sqrt{5}}{8} = \frac{8}{8} - \frac{3 + \sqrt{5}}{8} = \frac{5 - \sqrt{5}}{8}. Taking the square root: sin(18)=±558.\sin(18^\circ) = \pm\sqrt{\frac{5 - \sqrt{5}}{8}}. Since 1818^\circ is in the first quadrant, sin(18)>0\sin(18^\circ) > 0, so: sin(18)=558.\sin(18^\circ) = \sqrt{\frac{5 - \sqrt{5}}{8}}.

Step 5: Simplify the result

Rewriting: sin(18)=14(15).\sin(18^\circ) = \frac{1}{4}(1 - \sqrt{5}). Finally: [ \sin(-18^\circ) =

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Triple angle formula
Double angle formula
Pythagorean identities

Formulas

Cos(3θ) = 4Cos³θ - 3Cosθ
Sin(2θ) = 2SinθCosθ
Sin²θ + Cos²θ = 1

Theorems

Triple angle identity
Double angle identity
Pythagorean identity

Suitable Grade Level

Grades 11-12