Math Problem Statement
udowodnij ze dla dowolnych liczb rzeczywistych x i y prawdziwa jest nierownosc a)x^2+y^2-x(y+1)>=y-1
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Inequalities
Quadratic Expressions
Formulas
x^2 + y^2 - x(y + 1) >= y - 1
x^2 + y^2 - xy - x >= y - 1
Theorems
Basic inequality properties
Quadratic expressions simplification
Suitable Grade Level
Grades 10-12
Related Recommendation
Prove the Inequality 2x^2 + 2y^2 − 2xy − 2x − 4y + 5 > 0 Using Completing the Square
Prove the Inequality: x^2 + y^2 < (xy)^2 for x, y > 1
Prove Inequality |yx² + x - y| < 5/4 for x, y in (-1, 1)
Proof for Inequality x > y Implies x^2 > y^2 for Positive Numbers
Proof of Inequality: a^2 + b^2 + 2 ≥ (a+1)(b+1)