Math Problem Statement
Assume that when an adult is randomly selected, the probability that they do not require vision correction is 24%. If 8 adults are randomly selected, find the probability that exactly 2 of them do not require a vision correction. Question content area bottom Part 1 If 88 adults are randomly selected, the probability that exactly 2 of them do not require a vision correction is enter your response here. (Round to three decimal places as needed.)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Probability
Binomial Distribution
Formulas
Binomial probability formula: P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)
Binomial coefficient formula: C(n, k) = n! / (k!(n - k)!)
Theorems
Binomial Theorem
Suitable Grade Level
Grades 10-12
Related Recommendation
Binomial Probability: Probability that 2 out of 7 Adults Do Not Require Vision Correction
Calculating Probability of Vision Correction and Guessing Answers Using Binomial Distribution and Multiplication Rule
Binomial Probability Problems: Vision Correction and Test Guessing
Probability of Vision Correction Needs and Medical Test Scores
Calculating Probabilities in Multiple-Choice Questions and Binomial Distribution