Math Problem Statement

Detailed step by step solution

Find the polar coordinates for the given Cartesian points, and solve other polar and complex number problems as shown in the image.

Solution

Let’s work through the problems step by step, starting with the solutions to Question 1. I’ll provide detailed explanations for each part.


Question 1: Find the polar coordinates for the given Cartesian points:

The polar coordinates (r,θ)(r, \theta) can be calculated from Cartesian coordinates (x,y)(x, y) as:

  • r=x2+y2r = \sqrt{x^2 + y^2}
  • θ=arctan(yx)\theta = \arctan\left(\frac{y}{x}\right) (adjusted for the quadrant of the point)

(a) M1(3,3)M_1(-3, 3):

  1. Calculate rr: r=(3)2+(3)2=9+9=18=32r = \sqrt{(-3)^2 + (3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}

  2. Calculate θ\theta: θ=arctan(yx)=arctan(33)=arctan(1)\theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{3}{-3}\right) = \arctan(-1) Since the point is in the second quadrant, add π\pi to the angle: θ=ππ4=3π4.\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}.

  3. Polar coordinates: M1=(32,3π4).M_1 = (3\sqrt{2}, \frac{3\pi}{4}).


(b) M2(43,4)M_2(-4\sqrt{3}, -4):

  1. Calculate rr: r=(43)2+(4)2=48+16=64=8.r = \sqrt{(-4\sqrt{3})^2 + (-4)^2} = \sqrt{48 + 16} = \sqrt{64} = 8.

  2. Calculate θ\theta: θ=arctan(yx)=arctan(443)=arctan(13)=π6.\theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{-4}{-4\sqrt{3}}\right) = \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}. Since the point is in the third quadrant, add π\pi: θ=π+π6=7π6.\theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}.

  3. Polar coordinates: M2=(8,7π6).M_2 = (8, \frac{7\pi}{6}).


(c) M3(0,5)M_3(0, -5):

  1. Calculate rr: r=(0)2+(5)2=5.r = \sqrt{(0)^2 + (-5)^2} = 5.

  2. Calculate θ\theta: The point lies on the negative y-axis, so: θ=3π2.\theta = \frac{3\pi}{2}.

  3. Polar coordinates: M3=(5,3π2).M_3 = (5, \frac{3\pi}{2}).


(d) M4(2,1)M_4(-2, -1):

  1. Calculate rr: r=(2)2+(1)2=4+1=5.r = \sqrt{(-2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5}.

  2. Calculate θ\theta: θ=arctan(yx)=arctan(12)=arctan(12).\theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{-1}{-2}\right) = \arctan\left(\frac{1}{2}\right). Since the point is in the third quadrant, add π\pi: θ=π+arctan(12).\theta = \pi + \arctan\left(\frac{1}{2}\right).

  3. Polar coordinates: M4=(5,π+arctan(12)).M_4 = (\sqrt{5}, \pi + \arctan(\frac{1}{2})).


(e) M5(4,2)M_5(4, -2):

  1. Calculate rr: r=(4)2+(2)2=16+4=20=25.r = \sqrt{(4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}.

  2. Calculate θ\theta: θ=arctan(yx)=arctan(24)=arctan(12).\theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{-2}{4}\right) = \arctan\left(-\frac{1}{2}\right). Since the point is in the fourth quadrant, add 2π2\pi: θ=2π+arctan(12).\theta = 2\pi + \arctan\left(-\frac{1}{2}\right).

  3. Polar coordinates: M5=(25,2π+arctan(12)).M_5 = (2\sqrt{5}, 2\pi + \arctan(-\frac{1}{2})).


Would you like to proceed to Question 2, or should I clarify any steps above?


5 Related Questions:

  1. How can you determine the correct quadrant for the angle θ\theta?
  2. What are the formulas to convert from polar to Cartesian coordinates?
  3. Why do we add π\pi or 2π2\pi to the angle for certain quadrants?
  4. How would you calculate polar coordinates if x=0x = 0 or y=0y = 0?
  5. Can polar coordinates have negative values for rr?

1 Tip:

When working with polar coordinates, always sketch the point’s approximate location on the plane to avoid errors in determining the angle’s quadrant.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar Coordinates
Complex Numbers
Cartesian Coordinates
Trigonometry
Quadrants

Formulas

r = √(x² + y²)
θ = arctan(y/x)
z = x + yi (complex number form)
Polar representation: z = r(cosθ + i sinθ)

Theorems

Pythagorean theorem for magnitude
Arctangent function properties
Angle adjustment for quadrants

Suitable Grade Level

Grades 9-12