Math Problem Statement

Find the perimeter and the area of quadrilateral ABCD with vertices A(3, 5), B(6, 5), C(4, -1), and D(1, -1). Round your answer to the nearest hundredth place, if necessary.

Solution

To find the perimeter and area of quadrilateral ABCDABCD with vertices A(3,5)A(3, 5), B(6,5)B(6, 5), C(4,1)C(4, -1), and D(1,1)D(1, -1), follow these steps:

Perimeter:

  1. Calculate the distance between each pair of consecutive vertices using the distance formula:

    • AB=(63)2+(55)2=32+0=9=3AB = \sqrt{(6-3)^2 + (5-5)^2} = \sqrt{3^2 + 0} = \sqrt{9} = 3
    • BC=(46)2+(15)2=(2)2+(6)2=4+36=40=210BC = \sqrt{(4-6)^2 + (-1-5)^2} = \sqrt{(-2)^2 + (-6)^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10}
    • CD=(14)2+(1+1)2=(3)2+0=9=3CD = \sqrt{(1-4)^2 + (-1+1)^2} = \sqrt{(-3)^2 + 0} = \sqrt{9} = 3
    • DA=(31)2+(5+1)2=22+62=4+36=40=210DA = \sqrt{(3-1)^2 + (5+1)^2} = \sqrt{2^2 + 6^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10}
  2. Add the distances to find the perimeter:

    Perimeter=AB+BC+CD+DA=3+210+3+210=6+410\text{Perimeter} = AB + BC + CD + DA = 3 + 2\sqrt{10} + 3 + 2\sqrt{10} = 6 + 4\sqrt{10}

    Approximating 103.16\sqrt{10} \approx 3.16:

    Perimeter6+4(3.16)=6+12.64=18.64\text{Perimeter} \approx 6 + 4(3.16) = 6 + 12.64 = 18.64

Area:

Since the quadrilateral is not a standard shape like a rectangle or parallelogram, use the Shoelace Theorem (or surveyor's formula):

Area=12x1y2+x2y3+x3y4+x4y1(y1x2+y2x3+y3x4+y4x1)\text{Area} = \frac{1}{2} \left| x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - (y_1x_2 + y_2x_3 + y_3x_4 + y_4x_1) \right|

Plug in the coordinates:

=1235+6(1)+4(1)+15(56+54+(1)1+(1)3)= \frac{1}{2} \left| 3\cdot5 + 6\cdot(-1) + 4\cdot(-1) + 1\cdot5 - (5\cdot6 + 5\cdot4 + (-1)\cdot1 + (-1)\cdot3) \right|

=121564+5(30+2013)= \frac{1}{2} \left| 15 - 6 - 4 + 5 - (30 + 20 - 1 - 3) \right|

=121046=12×36=18= \frac{1}{2} \left| 10 - 46 \right| = \frac{1}{2} \times 36 = 18

Final Answers:

  • Perimeter: 18.64 units
  • Area: 18 square units

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Distance Formula
Shoelace Theorem

Formulas

Distance formula: d = sqrt((x2 - x1)^2 + (y2 - y1)^2)
Shoelace Theorem for area: Area = 1/2 * |x1y2 + x2y3 + x3y4 + x4y1 - (y1x2 + y2x3 + y3x4 + y4x1)|

Theorems

Shoelace Theorem

Suitable Grade Level

Grades 9-12