Math Problem Statement

(9x^2 + 3)/(x-1)(x^2 + x + 10) = A/x-1 + (Bx+C)/(x^2+x+10)

Solution

To express 9x2+3(x1)(x2+x+10)\frac{9x^2 + 3}{(x-1)(x^2 + x + 10)} as a partial fraction, we proceed by decomposing it as follows:

9x2+3(x1)(x2+x+10)=Ax1+Bx+Cx2+x+10\frac{9x^2 + 3}{(x-1)(x^2 + x + 10)} = \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 10}

Step 1: Clear the Denominator

Multiply both sides by the common denominator (x1)(x2+x+10)(x-1)(x^2 + x + 10):

9x2+3=A(x2+x+10)+(Bx+C)(x1)9x^2 + 3 = A(x^2 + x + 10) + (Bx + C)(x - 1)

Step 2: Expand the Right Side

Expand each term on the right side:

  1. Expand A(x2+x+10)A(x^2 + x + 10): A(x2+x+10)=Ax2+Ax+10AA(x^2 + x + 10) = Ax^2 + Ax + 10A

  2. Expand (Bx+C)(x1)(Bx + C)(x - 1): (Bx+C)(x1)=Bx2Bx+CxC=Bx2+(CB)xC(Bx + C)(x - 1) = Bx^2 - Bx + Cx - C = Bx^2 + (C - B)x - C

Thus, the right side becomes:

Ax2+Ax+10A+Bx2+(CB)xCAx^2 + Ax + 10A + Bx^2 + (C - B)x - C

Step 3: Combine Like Terms

Combine terms with x2x^2, xx, and the constant terms:

(A+B)x2+(A+CB)x+(10AC)(A + B)x^2 + (A + C - B)x + (10A - C)

Step

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Fractions
Algebra
Rational Expressions

Formulas

Partial Fraction Decomposition: A/(x-1) + (Bx+C)/(x^2+x+10)

Theorems

Partial Fraction Decomposition

Suitable Grade Level

Grades 10-12