Math Problem Statement

Solve for partial derivative of f2 With respect to V, S, E, A, I, H, R, G

Solve for partial derivative of f2 With respect to V, S, E, A, I, H, R, G

Solution

To solve for the partial derivatives of f2f_2 with respect to V,S,E,A,I,H,R,V, S, E, A, I, H, R, and GG, let's examine f2f_2 and differentiate it with respect to each variable.

The equation for f2f_2 is: f2=Λβ(I+h1A+h2G)SV+S+E+A+I+H+R+G(μ+η)S+ωVf_2 = \Lambda - \frac{\beta (I + h_1 A + h_2 G) S}{V + S + E + A + I + H + R + G} - (\mu + \eta) S + \omega V

Let's compute the partial derivatives:

1. Partial Derivative of f2f_2 with respect to VV:

Differentiating f2f_2 with respect to VV: f2V=V(Λβ(I+h1A+h2G)SV+S+E+A+I+H+R+G(μ+η)S+ωV)\frac{\partial f_2}{\partial V} = \frac{\partial}{\partial V} \left( \Lambda - \frac{\beta (I + h_1 A + h_2 G) S}{V + S + E + A + I + H + R + G} - (\mu + \eta) S + \omega V \right) Only the second and last terms depend on VV. Applying the quotient rule: f2V=β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2+ω\frac{\partial f_2}{\partial V} = - \frac{\beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2} + \omega

2. Partial Derivative of f2f_2 with respect to SS:

Differentiating f2f_2 with respect to SS: f2S=S(Λβ(I+h1A+h2G)SV+S+E+A+I+H+R+G(μ+η)S+ωV)\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left( \Lambda - \frac{\beta (I + h_1 A + h_2 G) S}{V + S + E + A + I + H + R + G} - (\mu + \eta) S + \omega V \right) Using the product and quotient rules, we get: f2S=β(I+h1A+h2G)(V+S+E+A+I+H+R+G)β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2(μ+η)\frac{\partial f_2}{\partial S} = - \frac{\beta (I + h_1 A + h_2 G)(V + S + E + A + I + H + R + G) - \beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2} - (\mu + \eta)

3. Partial Derivative of f2f_2 with respect to EE:

Only the second term depends on EE, so: f2E=β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2\frac{\partial f_2}{\partial E} = - \frac{\beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2}

4. Partial Derivative of f2f_2 with respect to AA:

f2A=A(β(I+h1A+h2G)SV+S+E+A+I+H+R+G)\frac{\partial f_2}{\partial A} = \frac{\partial}{\partial A} \left( - \frac{\beta (I + h_1 A + h_2 G) S}{V + S + E + A + I + H + R + G} \right) Applying the product and quotient rules: f2A=βh1S(V+S+E+A+I+H+R+G)β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2\frac{\partial f_2}{\partial A} = - \frac{\beta h_1 S (V + S + E + A + I + H + R + G) - \beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2}

5. Partial Derivative of f2f_2 with respect to II:

f2I=βS(V+S+E+A+I+H+R+G)β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2\frac{\partial f_2}{\partial I} = - \frac{\beta S (V + S + E + A + I + H + R + G) - \beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2}

6. Partial Derivative of f2f_2 with respect to HH:

Since HH only appears in the denominator: f2H=β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2\frac{\partial f_2}{\partial H} = - \frac{\beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2}

7. Partial Derivative of f2f_2 with respect to RR:

f2R=β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2\frac{\partial f_2}{\partial R} = - \frac{\beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2}

8. Partial Derivative of f2f_2 with respect to GG:

f2G=βh2S(V+S+E+A+I+H+R+G)β(I+h1A+h2G)S(V+S+E+A+I+H+R+G)2\frac{\partial f_2}{\partial G} = - \frac{\beta h_2 S (V + S + E + A + I + H + R + G) - \beta (I + h_1 A + h_2 G) S}{(V + S + E + A + I + H + R + G)^2}

If you'd like more detailed explanations or have any specific questions, feel free to ask!


Here are some related questions to consider:

  1. What does each term in f2f_2 represent in a real-world context?
  2. How do the parameters β\beta, h1h_1, and h2h_2 affect the behavior of f2f_2?
  3. What role does SS (susceptible population) play in the overall dynamics of this system?
  4. How would an increase in μ\mu (possibly death rate) impact f2f_2?
  5. What is the significance of each variable in this set of differential equations?

Tip: When differentiating functions with multiple variables, remember to carefully apply the quotient and product rules, especially when the function has complex denominators or nested terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Derivatives
Differential Equations
Mathematical Modeling

Formulas

f2 = Λ - (β(I + h1A + h2G)S) / (V + S + E + A + I + H + R + G) - (μ + η)S + ωV
Partial derivatives of functions involving multiple variables with respect to each individual variable using product and quotient rules

Theorems

Quotient Rule for Differentiation
Product Rule for Differentiation

Suitable Grade Level

Undergraduate Mathematics or Graduate Level (Advanced Calculus or Differential Equations)