Math Problem Statement

Find the orthogonal decomposition of v with respect to W. v =

3

−3 , W = span

1

5

projW(v) = perpW(v) =

Solution

To find the orthogonal decomposition of vv with respect to WW, we express vv as the sum of two vectors:

v=projW(v)+perpW(v)v = \text{proj}_W(v) + \text{perp}_W(v)

Where:

  • projW(v)\text{proj}_W(v) is the projection of vv onto WW.
  • perpW(v)\text{perp}_W(v) is the component of vv perpendicular to WW.

Given: v=[33],W=span{[15]}v = \begin{bmatrix} 3 \\ -3 \end{bmatrix}, \quad W = \text{span}\left\{ \begin{bmatrix} 1 \\ 5 \end{bmatrix} \right\}


Step 1: Compute the projection projW(v)\text{proj}_W(v)

The formula for the projection of vv onto WW is: projW(v)=vwwww\text{proj}_W(v) = \frac{v \cdot w}{w \cdot w} w

Here, w=[15]w = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.

  1. Compute vwv \cdot w (dot product of vv and ww): vw=[33][15]=3(1)+(3)(5)=315=12v \cdot w = \begin{bmatrix} 3 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} = 3(1) + (-3)(5) = 3 - 15 = -12

  2. Compute www \cdot w (dot product of ww with itself): ww=[15][15]=12+52=1+25=26w \cdot w = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} = 1^2 + 5^2 = 1 + 25 = 26

  3. Compute vwww\frac{v \cdot w}{w \cdot w}: vwww=1226=613\frac{v \cdot w}{w \cdot w} = \frac{-12}{26} = -\frac{6}{13}

  4. Multiply ww by vwww\frac{v \cdot w}{w \cdot w}: projW(v)=613[15]=[6133013]\text{proj}_W(v) = -\frac{6}{13} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} -\frac{6}{13} \\ -\frac{30}{13} \end{bmatrix}

Thus: projW(v)=[6133013]\text{proj}_W(v) = \begin{bmatrix} -\frac{6}{13} \\ -\frac{30}{13} \end{bmatrix}


Step 2: Compute perpW(v)\text{perp}_W(v)

The perpendicular component is: perpW(v)=vprojW(v)\text{perp}_W(v) = v - \text{proj}_W(v)

  1. Subtract projW(v)\text{proj}_W(v) from vv: perpW(v)=[33][6133013]\text{perp}_W(v) = \begin{bmatrix} 3 \\ -3 \end{bmatrix} - \begin{bmatrix} -\frac{6}{13} \\ -\frac{30}{13} \end{bmatrix}

  2. Perform the subtraction: perpW(v)=[3+6133+3013]=[3913+6133913+3013]=[4513913]\text{perp}_W(v) = \begin{bmatrix} 3 + \frac{6}{13} \\ -3 + \frac{30}{13} \end{bmatrix} = \begin{bmatrix} \frac{39}{13} + \frac{6}{13} \\ -\frac{39}{13} + \frac{30}{13} \end{bmatrix} = \begin{bmatrix} \frac{45}{13} \\ -\frac{9}{13} \end{bmatrix}

Thus: perpW(v)=[4513913]\text{perp}_W(v) = \begin{bmatrix} \frac{45}{13} \\ -\frac{9}{13} \end{bmatrix}


Final Answer:

projW(v)=[6133013],perpW(v)=[4513913]\text{proj}_W(v) = \begin{bmatrix} -\frac{6}{13} \\ -\frac{30}{13} \end{bmatrix}, \quad \text{perp}_W(v) = \begin{bmatrix} \frac{45}{13} \\ -\frac{9}{13} \end{bmatrix}

Would you like more details or further clarification?

Related Questions:

  1. How is the dot product calculated for two vectors?
  2. What are the properties of projections in linear algebra?
  3. How is the span of a set of vectors defined?
  4. What is the geometric meaning of perpW(v)\text{perp}_W(v)?
  5. Can you generalize the orthogonal decomposition for higher-dimensional spaces?

Tip:

Always verify your projection calculations by ensuring projW(v)\text{proj}_W(v) lies in the span of WW.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Projections
Orthogonal Decomposition

Formulas

Projection formula: proj_W(v) = (v ⋅ w / w ⋅ w) * w
Orthogonal decomposition: v = proj_W(v) + perp_W(v)

Theorems

Orthogonal Projection Theorem

Suitable Grade Level

Grades 11-12, Undergraduate Linear Algebra