Math Problem Statement

Give the order of the element in the factor group 5+<4> in Z12/ <4>

Solution

To find the order of the element 5+45 + \langle 4 \rangle in the factor group Z12/4\mathbb{Z}_{12} / \langle 4 \rangle, follow these steps:

  1. Identify the structure of the factor group Z12/4\mathbb{Z}_{12} / \langle 4 \rangle:

    • Z12\mathbb{Z}_{12} consists of elements {0,1,2,,11}\{0, 1, 2, \ldots, 11\}.
    • 4\langle 4 \rangle is the subgroup generated by 4 in Z12\mathbb{Z}_{12}. The elements of 4\langle 4 \rangle are {0,4,8}\{0, 4, 8\} because: 4×00(mod12),4×14(mod12),4×28(mod12),4×3120(mod12)4 \times 0 \equiv 0 \pmod{12}, \quad 4 \times 1 \equiv 4 \pmod{12}, \quad 4 \times 2 \equiv 8 \pmod{12}, \quad 4 \times 3 \equiv 12 \equiv 0 \pmod{12}
    • So, Z12/4\mathbb{Z}_{12} / \langle 4 \rangle consists of the cosets {4,1+4,2+4,3+4}\{ \langle 4 \rangle, 1 + \langle 4 \rangle, 2 + \langle 4 \rangle, 3 + \langle 4 \rangle \}.
  2. Find the coset 5+45 + \langle 4 \rangle:

    • 5+4={5,9,1}5 + \langle 4 \rangle = \{ 5, 9, 1 \} because: 55(mod12),5+49(mod12),5+8131(mod12)5 \equiv 5 \pmod{12}, \quad 5 + 4 \equiv 9 \pmod{12}, \quad 5 + 8 \equiv 13 \equiv 1 \pmod{12}
  3. Determine the order of the element 5+45 + \langle 4 \rangle:

    • The order is the smallest positive integer kk such that k(5+4)=4k(5 + \langle 4 \rangle) = \langle 4 \rangle.
    • Compute: 2(5+4)=10+42(5 + \langle 4 \rangle) = 10 + \langle 4 \rangle
      • 10+4={10,2,6}10 + \langle 4 \rangle = \{ 10, 2, 6 \}, which is not 4\langle 4 \rangle. 3(5+4)=15+43+43(5 + \langle 4 \rangle) = 15 + \langle 4 \rangle \equiv 3 + \langle 4 \rangle
      • 3+4={3,7,11}3 + \langle 4 \rangle = \{ 3, 7, 11 \}, which is not 4\langle 4 \rangle. 4(5+4)=20+48+44(5 + \langle 4 \rangle) = 20 + \langle 4 \rangle \equiv 8 + \langle 4 \rangle
      • 8+4=48 + \langle 4 \rangle = \langle 4 \rangle.

    Therefore, the order of 5+45 + \langle 4 \rangle is 4.

Summary: The order of the element 5+45 + \langle 4 \rangle in Z12/4\mathbb{Z}_{12} / \langle 4 \rangle is 4.

Would you like any further details or explanations?


Related Questions:

  1. How do you determine the order of an element in an arbitrary factor group?
  2. What is the significance of the factor group Z12/4\mathbb{Z}_{12} / \langle 4 \rangle?
  3. How can you generalize the process to find orders of elements in different cyclic groups?
  4. What is the relationship between the order of an element and the subgroup it generates?
  5. Can you explain how to identify all cosets of a subgroup in a given group?

Tip: When dealing with factor groups, remember that the order of an element is the same as the smallest multiple that brings it back to the identity coset.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Group Theory
Factor Groups
Cosets

Formulas

-

Theorems

-

Suitable Grade Level

Advanced Undergraduate