Math Problem Statement
C 13 14 9 D E F [Graphs generated by this script: setBorder(60,30,60,30);initPicture(-10,10,2.5,7.5); fontsize=14;fontstyle='none';marker=null;line([-10,2.5],[10,2.5]);line([-10,2.5],[10,5]);line([-10,2.5],[10,7.5]);line([-10,5],[10,2.5]);line([-10,5],[10,5]);line([-10,5],[10,7.5]);line([-10,7.5],[10,2.5]);line([-10,7.5],[10,5]);line([-10,7.5],[10,7.5]);fontbackground='white';fontfill='blue';text([-10,2.5],'A','belowleft');dot([-10,2.5]);fontfill='red';text([-6,2.5],'15');fontfill='red';text([6,4.5],'6');fontfill='red';text([-6,3.5],'11');fontfill='blue';text([-10,5],'B','belowleft');dot([-10,5]);fontfill='red';text([6,3],'10');fontfill='red';text([-6,5],'5');fontfill='red';text([6,7],'1');fontfill='blue';text([-10,7.5],'C','aboveleft');dot([-10,7.5]);fontfill='red';text([-6,6.5],'13');fontfill='red';text([6,5.5],'14');fontfill='red';text([-6,7.5],'9');fontfill='blue';text([10,2.5],'D','belowright');dot([10,2.5]);fontfill='blue';text([10,5],'E','belowright');dot([10,5]);fontfill='blue';text([10,7.5],'F','aboveright');dot([10,7.5]);]
Apply the nearest neighbor algorithm to the graph above starting at vertex A. Give your answer as a list of vertices, starting and ending at vertex A. Example: ABCDEFA
Solution
The nearest neighbor algorithm for the graph involves starting at a given vertex (here, ), moving to the nearest (shortest distance) unvisited vertex, and repeating until all vertices are visited before returning to the starting vertex.
Steps for Nearest Neighbor Algorithm:
- Start at vertex .
- Move to the nearest unvisited vertex.
- Repeat step 2 until all vertices are visited.
- Return to vertex .
Distance between vertices:
Here are the distances from the given graph's data:
- From ():
- : (straight vertical distance)
- :
- :
- :
- :
- From ():
- :
- :
- :
- :
- From ():
- :
- :
- :
- From ():
- :
- :
- From ():
- :
Application of the Algorithm:
-
Start at .
- Nearest neighbor: (distance ).
- Path so far: .
-
At :
- Nearest unvisited neighbor: (distance ).
- Path so far: .
-
At :
- Nearest unvisited neighbor: (distance ).
- Path so far: .
-
At :
- Nearest unvisited neighbor: (distance ).
- Path so far: .
-
At :
- Nearest unvisited neighbor: (distance ).
- Path so far: .
-
At :
- Return to (distance ).
- Path: .
Final Path:
Let me know if you need further explanation or details about the computation!
Here are 5 related questions:
- How do you calculate the total distance traveled in this path?
- What happens if we start from a different vertex instead of ?
- How does this algorithm perform in terms of optimality compared to other TSP heuristics?
- Can we modify the algorithm to visit vertices in a weighted graph?
- What is the complexity of the nearest neighbor algorithm?
Tip: Visualizing the graph while solving such problems helps ensure the accuracy of your path!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Graph Theory
Algorithms
Traveling Salesman Problem (TSP)
Formulas
Distance formula: √((x2 - x1)² + (y2 - y1)²)
Nearest Neighbor Algorithm
Theorems
Triangle Inequality (used in TSP)
Graph traversal techniques
Suitable Grade Level
Grades 10-12
Related Recommendation
Nearest Neighbor Algorithm: Graph Path Starting at Vertex A
Nearest Neighbor Algorithm Applied to Hamiltonian Circuit Starting at Vertex A
Solve Cheapest Path Using Nearest Neighbor or Best Edge Algorithm
Traveling Salesman Problem with Nearest-Neighbor Algorithm: City A to F Tour
Nearest Neighbor Algorithm Solution for a Weighted Graph Starting at Vertex A