Math Problem Statement

Question content area top

Part 1

Multiply.

StartRoot 7 EndRoot7​(9minus−10StartRoot 7 EndRoot7​)

Solution

We are asked to multiply the following expression:

77(9107)\sqrt{7} \cdot 7(9 - 10\sqrt{7})

Step 1: Distribute 77\sqrt{7} \cdot 7 across the parentheses

Distribute 77\sqrt{7} \cdot 7 to each term inside the parentheses:

77977107\sqrt{7} \cdot 7 \cdot 9 - \sqrt{7} \cdot 7 \cdot 10\sqrt{7}

Step 2: Simplify each term

  • The first term:
    779=797=637\sqrt{7} \cdot 7 \cdot 9 = 7 \cdot 9 \cdot \sqrt{7} = 63\sqrt{7}

  • The second term:
    77107=71077=707=490\sqrt{7} \cdot 7 \cdot 10\sqrt{7} = 7 \cdot 10 \cdot \sqrt{7} \cdot \sqrt{7} = 70 \cdot 7 = 490

Step 3: Combine the results

Now, we combine both terms:

63749063\sqrt{7} - 490

Thus, the result is:

63749063\sqrt{7} - 490

Would you like further explanation or help with any additional steps?

Related Questions:

  1. What happens if we multiply expressions with square roots like ab\sqrt{a} \cdot \sqrt{b}?
  2. How can we simplify the expression aa\sqrt{a} \cdot \sqrt{a}?
  3. What are some strategies to simplify more complicated square root expressions in algebra?
  4. How does distributing in multiplication affect the outcome in expressions involving parentheses?
  5. How can you recognize when an expression can be factored further?

Tip: When multiplying square roots, remember ab=ab\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Square Roots
Distributive Property

Formulas

\(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\)
Distributive Property: a(b + c) = ab + ac

Theorems

Multiplication of square roots
Distributive property of multiplication

Suitable Grade Level

Grades 7-9