Math Problem Statement

Solve these with final answers

Solve these with final answers.

Solution

To solve the given questions, we will go step by step using the given data. Below are the problem details and corresponding solutions.


(a) State the conditions to verify the assumptions regarding the Saturation Mode of a MOSFET.

For the MOSFET to be in the Saturation Mode, the following conditions must be satisfied:

  1. VGS>VTV_{GS} > V_T: The gate-to-source voltage must exceed the threshold voltage VTV_T.
  2. VDSVGSVTV_{DS} \geq V_{GS} - V_T: The drain-to-source voltage must be greater than or equal to VGSVTV_{GS} - V_T.

Given:

  • VT=1VV_T = 1 \, \text{V}.

(b) Analyze the circuit and calculate VoutV_{out} for RD=0.1kΩR_D = 0.1 \, k\Omega. Validate the assumption whether the MOSFET is in saturation mode.

Step 1: Analyze the circuit.

For Input = Logic HIGH,

  • Vin=5VV_{in} = 5 \, \text{V}.
  • The MOSFET gate voltage, VGS=Vin=5VV_{GS} = V_{in} = 5 \, \text{V}.
  • The drain voltage is VoutV_{out}, and VDS=Vout0V=VoutV_{DS} = V_{out} - 0 \, \text{V} = V_{out}.

Step 2: Check the MOSFET mode.

  1. Check VGS>VTV_{GS} > V_T:

    • VGS=5V,VT=1VV_{GS} = 5 \, \text{V}, V_T = 1 \, \text{V}.
    • 5>15 > 1: This condition is satisfied.
  2. Check VDSVGSVTV_{DS} \geq V_{GS} - V_T:

    • VDS=Vout,VGSVT=51=4VV_{DS} = V_{out}, V_{GS} - V_T = 5 - 1 = 4 \, \text{V}.
    • Assume saturation mode: Vout4VV_{out} \geq 4 \, \text{V}.
    • We will validate this later.

Step 3: Apply MOSFET equations to calculate VoutV_{out}.

In saturation mode,
ID=k2(VGSVT)2I_{D} = \frac{k}{2} (V_{GS} - V_T)^2

Substitute given values:

  • k=4mA/V2,VGS=5V,VT=1Vk = 4 \, \text{mA/V}^2, V_{GS} = 5 \, \text{V}, V_T = 1 \, \text{V}.

ID=42(51)2=216=32mA.I_{D} = \frac{4}{2} (5 - 1)^2 = 2 \cdot 16 = 32 \, \text{mA}.

Now, calculate VoutV_{out}:
Vout=VDDIDRD,V_{out} = V_{DD} - I_{D} R_{D},
where VDD=10V,RD=0.1kΩ=100ΩV_{DD} = 10 \, \text{V}, R_{D} = 0.1 \, \text{k}\Omega = 100 \, \Omega.

Vout=10(32×0.1)=103.2=6.8V.V_{out} = 10 - (32 \times 0.1) = 10 - 3.2 = 6.8 \, \text{V}.


Step 4: Validate saturation assumption.

For saturation mode, Vout4VV_{out} \geq 4 \, \text{V}.
Here, Vout=6.8VV_{out} = 6.8 \, \text{V}, so the MOSFET is indeed in saturation mode.


(c) Analyze the modified circuit for RD=1kΩR_D = 1 \, k\Omega and calculate VoutV_{out}.

Step 1: Recalculate IDI_{D} using the same formula.

ID=42(51)2=32mA.I_{D} = \frac{4}{2} (5 - 1)^2 = 32 \, \text{mA}.

Step 2: Recalculate VoutV_{out}:

Vout=VDDIDRD,V_{out} = V_{DD} - I_{D} R_{D},
where RD=1kΩ=1000ΩR_{D} = 1 \, \text{k}\Omega = 1000 \, \Omega.

[ V_{out} = 10 - (32 \times 1) = 10 - 32 = -22 , \text{V}. \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Circuit Analysis
MOSFET Operation Modes
Voltage Levels

Formulas

I_D = \frac{k}{2} (V_{GS} - V_T)^2
V_{out} = V_{DD} - I_{D} R_{D}

Theorems

Saturation Mode Conditions for MOSFET

Suitable Grade Level

Undergraduate