Math Problem Statement

Большой круглый стол сервирован на 24 персоны. По правилам этикета, которые соблюдаются всеми гостями, предполагается, что желание вновь пришедшего занять место за столом должно сопровождаться обязательным и моментальным вставанием соседа слева или справа (но не двух одновременно). Дальнейшее усаживание вставшего из-за стола гостя сопровождается теми же правилами этикета. Если пришедший гость занимает кресло, для которого места справа и слева свободны, никто из уже сидящих гостей не встает. Какое максимальное число гостей можно усадить за таким столом при соблюдении указанных условий?

Solution

This problem describes a seating etiquette scenario at a round table with 24 seats, where specific etiquette rules dictate how seats can be occupied and vacated. Here’s a breakdown of the problem:

  1. Seating Rules: For each new guest taking a seat, one of their immediate neighbors (either to the left or right) must temporarily stand up as part of the etiquette.
  2. Vacating Rules: If a guest wants to sit in a chair where both adjacent seats are unoccupied, no one else at the table needs to stand up.

Objective: To determine the maximum number of guests that can be seated at this table while following these rules.

Solution Approach

  1. To maximize the seating arrangement while maintaining etiquette, we should explore the pattern of seating guests in alternate seats.
  2. By placing guests in every other seat, each new guest would be seated with at least one adjacent seat already occupied, satisfying the etiquette without requiring additional neighbors to stand.

Let me calculate the solution with this strategy in mind.The maximum number of guests that can be seated at this round table, following the given etiquette rules, is 12. By placing a guest in every other seat, each new guest has an occupied neighboring seat, and no one else needs to stand unnecessarily.

Would you like further details or have any questions?

Here are some related questions that might help deepen understanding:

  1. What if the table had a different number of seats, say 30 or 20?
  2. How would the etiquette change if two adjacent neighbors needed to stand up instead of one?
  3. Can this solution be generalized to different types of seating arrangements?
  4. How would the solution change if there were more complex etiquette rules for sitting?
  5. What if guests were seated randomly instead of in a structured pattern?

Tip: In problems involving patterns or constraints, finding symmetry or regular intervals often simplifies complex rules.